Smart Hydrogels in Engineering and Biomedical Applications

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 2203

Special Issue Editors


E-Mail Website
Guest Editor
School of Life Science, Keele University, Staffordshire ST5 5BG, UK
Interests: biomaterials; biopolymers; tissue engineering; hydrogels
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
Interests: advanced biomaterials; especially hydrogel; drug delivery; additive manufacturing and 3D bioprinting
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Background:

Hydrogels are cross-linked hydrophilic polymers whose water-rich nature makes them broadly applicable in an aqueous microenvironment in both the engineering and biomedical fields. Advanced material synthesis and fabrication technology have rapidly led to the introduction of smart hydrogels in the traditional field of materials science. The use of hydrogels as water-based lubricants in engineering and biomedical applications is currently a hot research area. One of their applications is represented by the replacement of traditional mineral oil lubricants in ship bearings. Hydrogels also have great potential to treat disorders involving the lubricated surfaces of human organs, for example, articular cartilage.

Goal:

There has been considerable progress in the application water-based lubricants, including biopolymers and synthetic polymeric hydrogels, in recent years. However, the working mechanisms of lubrication and how the lubrication performance of these water-based hydrogels can be improved require further study and investigation. This Special Issue will specifically address these challenges.

Scope and Information for authors:

This Special Issue welcomes both review and research articles. Areas of interest include, but are not limited to, the following:

  • New techniques for the design and fabrication of highly controllable hydration lubricants;
  • The working mechanisms of hydrogels as water-based lubricants;
  • Composite of water-based lubricants with hydrogels;
  • Application of biological macromolecules, biomimetic polymers, polyelectrolytes and polyzwitterionic brushes, etc., as lubricants hydrogels.

Prof. Dr. Ying Yang
Dr. Pooya Davoodi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogels
  • lubrication
  • biotribology
  • articular joint
  • water-based lubricants
  • composite lubricants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3705 KiB  
Article
Hydrophobic Interactions of Modified Coconut Oil and Pluronic 127 Enable Stable Formation of Bioactive Hydrogel for Onychomycosis
by Daniel P. Fitzpatrick, Grace Lawler, Carmel Kealey, Damien Brady and Jim Roche
Gels 2025, 11(8), 592; https://doi.org/10.3390/gels11080592 (registering DOI) - 31 Jul 2025
Abstract
Fungal infections pose a significant yet under-recognised global health burden, affecting over one billion individuals annually and contributing to approximately 2.5 million direct deaths. The World Health Organisation (WHO) has recently reemphasised this issue through the publication of its Fungal Priority Pathogens List [...] Read more.
Fungal infections pose a significant yet under-recognised global health burden, affecting over one billion individuals annually and contributing to approximately 2.5 million direct deaths. The World Health Organisation (WHO) has recently reemphasised this issue through the publication of its Fungal Priority Pathogens List (FPPL) and its 2025 report evaluating current antifungal diagnostics and therapeutics. Among the most prevalent fungal pathogens is Trichophyton rubrum, an anthropophilic dermatophyte responsible for up to 70% of superficial fungal infections, including onychomycosis. The emergence of antifungal resistance further complicates management, necessitating the development of novel, effective, and sustainable treatment alternatives. Natural compounds are increasingly being explored for their antifungal potential due to their broad-spectrum activity and lower toxicity. Coconut oil has gained particular attention for its therapeutic properties attributed to medium-chain fatty acids (MCFAs), especially lauric acid. The aim of this study was to understand how innate and modified coconut oils can alter the rheological properties of Pluronic hydrogels while retaining antifungal activity for downstream application in treating fungal infections. Results identified hydrophobic interactions by FTIR and DSC between the hydrocarbon chains of the coconut triglycerides and the hydrophobic core of the Pluronic micelles, leading to gel stabilisation as identified by rheological analysis. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

Review

Jump to: Research

33 pages, 3171 KiB  
Review
Environmentally Responsive Hydrogels and Composites Containing Hydrogels as Water-Based Lubricants
by Song Chen, Zumin Wu, Lei Wei, Xiuqin Bai, Chengqing Yuan, Zhiwei Guo and Ying Yang
Gels 2025, 11(7), 526; https://doi.org/10.3390/gels11070526 - 7 Jul 2025
Viewed by 465
Abstract
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such [...] Read more.
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such as soft robots. However, external environments, whether within the human body or in engineering applications, often present a wide range of dynamic conditions, including variations in shear stress, temperature, light, pH, and electric fields. Additionally, hydrogels inherently possess low mechanical strength, and their dimensional stability can be compromised by changes during hydration. This review focuses on recent advancements in using environmentally responsive hydrogels as lubricants. It explores strategies involving physical or structural modifications, as well as the incorporation of smart chemical functional groups into hydrogel polymer chains, which enable diverse responsive mechanisms. Drawing on both the existing literature and our own research, we also examine how composite friction materials where hydrogels serve as water-based lubricants offer promising solutions for demanding engineering environments, such as bearing systems in marine vessels. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

22 pages, 4596 KiB  
Review
Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications
by Ke Ding, Mingrui Liao, Yingyu Wang and Jian R. Lu
Gels 2025, 11(6), 420; https://doi.org/10.3390/gels11060420 - 31 May 2025
Cited by 1 | Viewed by 1130
Abstract
Stimuli-responsive hydrogels have emerged as a promising class of biomaterials for advanced wound healing applications, offering dynamic and controllable responses to the wound microenvironment. These hydrogels are designed to respond to specific stimuli, such as pH, temperature, light, and enzyme activity, enabling precise [...] Read more.
Stimuli-responsive hydrogels have emerged as a promising class of biomaterials for advanced wound healing applications, offering dynamic and controllable responses to the wound microenvironment. These hydrogels are designed to respond to specific stimuli, such as pH, temperature, light, and enzyme activity, enabling precise regulation of drug release, antimicrobial activity, and tissue regeneration. Composite stimuli-responsive hydrogels, by integrating multiple response mechanisms and functions, show potential for addressing the diverse needs of wound healing. This review explores the biological mechanisms of wound healing, the design and classification of composite stimuli-responsive hydrogels, and the key fabrication strategies employed to optimise their properties. Despite their immense potential, unresolved challenges such as biocompatibility, long-term stability, and scalability continue to limit their translation into clinical practice. Future research will focus on integrating hydrogels with smart wearable devices, AI-driven personalised medicine, and 3D bioprinting technologies to develop next-generation wound care solutions. With continuous advancements in biomaterials science and bioengineering, stimuli-responsive hydrogels hold great promise for revolutionising wound management. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop