Starches: From Structure to Functional Properties

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Physics and (Bio)Chemistry".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 3376

Special Issue Editor


E-Mail Website
Guest Editor
Agricultural College, Yangzhou University, Yangzhou, China
Interests: starch

Special Issue Information

Dear Colleagues,

Starch is the major component of cereal and tuber crops, and it is also an important material for food industries. Currently, two main factors, good eating and cooking qualities and high nutritional values (including low GI), are considered to be essential qualities for starchy food. However, many studies have shown that these two qualities attribute to almost contrary starch structure and properties, and it is a big challenge to breed new crops or produce new foods which are both tasty and healthy. Therefore, a better understanding of starch’s structure and its functional properties relationships is crucial. Starch contains multiple complex levels of structures, including chain length distribution, whole molecular distribution, crystalline structure, semi-crystalline lamellar structure, etc. These structures play important roles in determining starch’s functional properties, such as pasting and thermal properties, digestibility, appearance, texture, and sensory aspects. Advanced analysis technology and data interpretation methods have also been developed recently for obtaining better and accurate structure and property information. New knowledge and technology developments about starch’s structure and functional properties will provide a theoretical basis for the improvement of both agriculture and food industries in the future.

Dr. Enpeng Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cereal starch
  • molecular structure
  • liquid chromatography
  • starchy food
  • digestion
  • sensory aspects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3957 KB  
Article
Effects of Different Degrees of Gelatinization on Structural, Physicochemical and Digestive Properties of Kudzu Starch
by Zirui He, Fan Zhu, Mei Li and Xiangli Kong
Foods 2025, 14(21), 3614; https://doi.org/10.3390/foods14213614 - 23 Oct 2025
Viewed by 888
Abstract
Kudzu (Pueraria spp.) starch, valued for its transparency, viscosity, and stability, has broad potential in functional and instant food applications. However, its limited cold-water solubility and inconsistent functional performance across cultivars hinder wider utilization. To improve its processability and nutritional functionality, this [...] Read more.
Kudzu (Pueraria spp.) starch, valued for its transparency, viscosity, and stability, has broad potential in functional and instant food applications. However, its limited cold-water solubility and inconsistent functional performance across cultivars hinder wider utilization. To improve its processability and nutritional functionality, this study aimed to elucidate how the degree of gelatinization (DG)—a structural indicator of starch transformation—can be precisely controlled and used to modulate starch properties. Starches from two typical kudzu cultivars, K10 (Pueraria thomsonii) and K27 (Pueraria lobata), were subjected to hydrothermal treatment (45–95 °C) to obtain samples with defined DG levels. DG was quantitatively determined by enzymatic assay, differential scanning calorimetry (DSC), and iodine-binding analysis, enabling method cross-validation. Increasing DG enhanced iodine complexation capacity, elevated gelatinization temperatures, and reduced enthalpy change and crystallinity. K27 exhibited more pronounced physicochemical transitions at lower DG than K10, indicating cultivar-specific sensitivity. In vitro digestion revealed that hydrolysis kinetics gradually approached and eventually conformed to a first-order model as DG increased, confirming a DG-dependent shift in digestibility. These results establish DG—rather than processing temperature—as the primary factor governing kudzu starch functionality and provide a methodological basis for designing starch-based foods with tailored glycemic and textural properties. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Graphical abstract

14 pages, 2837 KB  
Article
A Starch Molecular Explanation for Effects of Ageing Temperature on Pasting Property, Digestibility, and Texture of Rice Grains
by Enpeng Li, Xue Xiao, Yifei Huang, Yi Ji, Changquan Zhang and Cheng Li
Foods 2025, 14(15), 2661; https://doi.org/10.3390/foods14152661 - 29 Jul 2025
Cited by 1 | Viewed by 880
Abstract
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A [...] Read more.
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A small but significant variation was observed for starch chain lengths, and this variation depended on both rice varieties and storage temperatures. Rice grains aged at higher temperatures had much higher peak (~25% larger) and setback viscosities (~50% larger) compared to those stored at lower temperatures. The digestion rate constant was lowered (~10%) most significantly at 40 °C. However, the maximum starch digested percentage increased after ageing. All rice varieties showed the lowest hardness at 4 °C and the highest hardness at 40 °C (~20% larger) after ageing. The changes in starch molecular structures were consistent with altered rice properties according to the established structure–property correlations. These results could improve our understanding of the complex rice ageing process. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

18 pages, 2235 KB  
Article
Creating a Superior Wx Allele with Temperature-Responsive Amylose Regulation and a Novel Transcriptional Pattern in Rice via CRISPR/Cas9-Mediated Promoter Editing
by Jiali Yan, Jiawen Yu, Huimin Shen, Lihui Zhou, Zhuanzhuan Chen, Xiaolei Fan, Qianfeng Li, Changquan Zhang, Qing Liu, Lichun Huang and Qiaoquan Liu
Foods 2025, 14(8), 1330; https://doi.org/10.3390/foods14081330 - 11 Apr 2025
Cited by 2 | Viewed by 1249
Abstract
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wx [...] Read more.
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wxb-d25 allele by deleting a 25 bp segment (−26 to −2) within the Wx core promoter using CRISPR/Cas9. Compared with the wild type and the previously reported Wxb-i1, Wxb-d25 exhibited no significant changes in agronomic traits. However, its grains displayed temperature-dependent variations in AC and altered transparency and viscosity characteristics, holding the potential to synergistically improve both the eating and cooking quality (ECQ) and appearance quality (AQ) of rice. Further studies demonstrated that this promoter modification, by partially disrupting the transcription initiator, significantly downregulated the original Wx-01 transcript and generated a novel Wx transcript (ONT.7395.1) in Wxb-d25 grains. Despite its low expression abundance, the ONT.7395.1 transcript could be completely processed into mature Wx mRNA. The combined effects of the dual transcripts resulted in significantly increased Wx gene expression and AC in Wxb-d25 grains under conventional cultivation conditions. These findings provide a genetic resource and a theoretical foundation for utilizing the Wxb-d25 allele to improve rice grain quality. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

Back to TopTop