Starches: From Structure to Functional Properties

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Physics and (Bio)Chemistry".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 716

Special Issue Editor


E-Mail Website
Guest Editor
Agricultural College, Yangzhou University, Yangzhou, China
Interests: starch

Special Issue Information

Dear Colleagues,

Starch is the major component of cereal and tuber crops, and it is also an important material for food industries. Currently, two main factors, good eating and cooking qualities and high nutritional values (including low GI), are considered to be essential qualities for starchy food. However, many studies have shown that these two qualities attribute to almost contrary starch structure and properties, and it is a big challenge to breed new crops or produce new foods which are both tasty and healthy. Therefore, a better understanding of starch’s structure and its functional properties relationships is crucial. Starch contains multiple complex levels of structures, including chain length distribution, whole molecular distribution, crystalline structure, semi-crystalline lamellar structure, etc. These structures play important roles in determining starch’s functional properties, such as pasting and thermal properties, digestibility, appearance, texture, and sensory aspects. Advanced analysis technology and data interpretation methods have also been developed recently for obtaining better and accurate structure and property information. New knowledge and technology developments about starch’s structure and functional properties will provide a theoretical basis for the improvement of both agriculture and food industries in the future.

Dr. Enpeng Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cereal starch
  • molecular structure
  • liquid chromatography
  • starchy food
  • digestion
  • sensory aspects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2235 KiB  
Article
Creating a Superior Wx Allele with Temperature-Responsive Amylose Regulation and a Novel Transcriptional Pattern in Rice via CRISPR/Cas9-Mediated Promoter Editing
by Jiali Yan, Jiawen Yu, Huimin Shen, Lihui Zhou, Zhuanzhuan Chen, Xiaolei Fan, Qianfeng Li, Changquan Zhang, Qing Liu, Lichun Huang and Qiaoquan Liu
Foods 2025, 14(8), 1330; https://doi.org/10.3390/foods14081330 - 11 Apr 2025
Viewed by 521
Abstract
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wx [...] Read more.
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wxb-d25 allele by deleting a 25 bp segment (−26 to −2) within the Wx core promoter using CRISPR/Cas9. Compared with the wild type and the previously reported Wxb-i1, Wxb-d25 exhibited no significant changes in agronomic traits. However, its grains displayed temperature-dependent variations in AC and altered transparency and viscosity characteristics, holding the potential to synergistically improve both the eating and cooking quality (ECQ) and appearance quality (AQ) of rice. Further studies demonstrated that this promoter modification, by partially disrupting the transcription initiator, significantly downregulated the original Wx-01 transcript and generated a novel Wx transcript (ONT.7395.1) in Wxb-d25 grains. Despite its low expression abundance, the ONT.7395.1 transcript could be completely processed into mature Wx mRNA. The combined effects of the dual transcripts resulted in significantly increased Wx gene expression and AC in Wxb-d25 grains under conventional cultivation conditions. These findings provide a genetic resource and a theoretical foundation for utilizing the Wxb-d25 allele to improve rice grain quality. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

Back to TopTop