Detection and Control of Foodborne Pathogens and Microbiota in Food Processing Environments and Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 15 March 2026 | Viewed by 1684

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
Interests: pathogens; food microbiology; detection; food safety
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Ensuring the safety of food remains a significant challenge in food production, particularly with the persistence of foodborne pathogens in food processing environments. Advances in detection technologies and control strategies have greatly improved our ability to monitor, manage, and mitigate microbial risks. This Special Issue aims to highlight cutting-edge research on innovative approaches to detecting and controlling foodborne pathogens and microbiota in food production systems.

We invite the submission of original research articles focusing on emerging detection technologies and real-time monitoring systems for the detection of foodborne pathogens. Studies exploring novel biocontrol strategies, antimicrobial interventions, predictive microbiology, and environmental monitoring for microbial risk assessments are also welcome. This Special Issue seeks to provide a platform for advancing scientific knowledge and the technological innovations that contribute to developing safer and more sustainable food processing practices.

Dr. Ok-Kyung Koo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • foodborne pathogens
  • microbiota in food processing
  • emerging detection technologies
  • biosensors for food safety
  • antimicrobial agents
  • precision biocontrol
  • real-time food safety management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2223 KB  
Article
Evaluation of Robotic Swabbing and Fluorescent Sensing to Monitor the Hygiene of Food Contact Surfaces
by Siavash Mahmoudi, Clark Griscom, Pouya Sohrabipour, Yang Tian, Chaitanya Pallerla, Philip Crandall and Dongyi Wang
Foods 2025, 14(19), 3311; https://doi.org/10.3390/foods14193311 - 24 Sep 2025
Viewed by 525
Abstract
Effective environmental monitoring is critical for preventing microbial and allergenic cross-contamination. However, manual swabbing methods, commonly used to verify hygienic conditions, are prone to inconsistent results because of variability in pressure, coverage, and techniques. Two novel solutions will be explored to address these [...] Read more.
Effective environmental monitoring is critical for preventing microbial and allergenic cross-contamination. However, manual swabbing methods, commonly used to verify hygienic conditions, are prone to inconsistent results because of variability in pressure, coverage, and techniques. Two novel solutions will be explored to address these challenges: a robotic swabbing system with tactile sensing control, and a fluorescence/absorbance spectrometer for non-contact, protein-based residue detection. The robotic system was evaluated against trained and untrained humans, measuring water pickup, surface coverage, and pressure consistency. Concurrently, the fluorescence system analyzed model poultry protein soil to correlate spectral patterns with contamination levels. The robotic system demonstrated statistically superior performance, achieving consistent force application and near-complete surface coverage, overcoming key limitations of manual sampling. The fluorescence system distinguished contamination with high sensitivity, validating its use as a rapid, non-contact assessment tool. Together, the robotic sample acquisition and the spectrometer’s sensitive analysis provide a dual-modality framework for enhancing hygiene monitoring in manufacturing facilities. Full article
Show Figures

Figure 1

29 pages, 4254 KB  
Article
Comparative Study of Natamycin Encapsulation in Liposomes: Thin-Film vs. Proliposome Methods for Enhanced Stability, Controlled Release, and Efficacy Against Milk Spoilage and Pathogenic Microorganisms
by Natalija Čutović, Petar Batinić, Tatjana Marković, Jovana Petrović, Milena Obradović, Branko Bugarski and Aleksandra A. Jovanović
Foods 2025, 14(17), 3064; https://doi.org/10.3390/foods14173064 - 30 Aug 2025
Viewed by 858
Abstract
The aim of this study was to evaluate liposomal particles as a potential delivery system for natamycin, a widely known antimicrobial agent used in the food industry. The goal was to prolong its diffusion into the surrounding medium. Natamycin-loaded liposomes were prepared using [...] Read more.
The aim of this study was to evaluate liposomal particles as a potential delivery system for natamycin, a widely known antimicrobial agent used in the food industry. The goal was to prolong its diffusion into the surrounding medium. Natamycin-loaded liposomes were prepared using two methods (proliposome and thin-film) and two different phospholipid mixtures. The characterization of natamycin-loaded liposomes was performed in terms of their chemical composition (FT-IR analysis), encapsulation efficiency (EE), and antimicrobial potential against spoilage and pathogenic microorganisms that can be found in milk and milk products. During the 60-day storage period, their size, polydispersity index (PDI), and zeta potential were measured. The in vitro release kinetics of natamycin from liposomes were also assessed, and the results showed a significantly lower release rate of the drug when it was encapsulated. EE showed a high level of natamycin encapsulation (>80%), which was confirmed with FT-IR analysis. The stability study indicated that these systems were stable over a 60-day storage period, as the zeta potential of all formulations was ~−25 mV. Satisfactory antimicrobial performance of the developed liposomes against Listeria monocytogenes, Yersinia enterocolitica, Candida tropicalis, Candida parapsilosis, and Aspergillus flavus (MIC values from 0.00625 to 4 mg/mL) indicates that loading of natamycin into liposomal carriers was an adequate method for their encapsulation and delivery in the milk industry. Full article
Show Figures

Figure 1

Back to TopTop