Use of Fibers in Organic and Inorganic Composite Solutions for Structural Strengthening: Advances, Applications, and Challenges
A special issue of Fibers (ISSN 2079-6439).
Deadline for manuscript submissions: 15 June 2025 | Viewed by 8922
Special Issue Editor
Interests: cementitious; geopolymer; mortar; concrete; construction engineering; civil engineering materials; building materials
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
This Special Issue aims to provide a platform for researchers, engineers, and practitioners to share their latest findings, experiences, and challenges in using composites to strengthen existing structures. Composites, as an innovative solution, have gained increasing attention due to their high strength, light weight, and corrosion resistance.
Fibre-reinforced polymer (FRP) composites have been used for many years in the field of structural strengthening. FRP composites consist of high-strength fibres, such as carbon, glass, or aramid fibres, embedded in a polymer matrix. They are a popular choice for structural strengthening due to their high strength, light weight, and durability. One of the main advantages of FRP composites is their excellent resistance to corrosion. They are also highly durable and can withstand exposure to harsh environments, making them an ideal solution for strengthening structures that are exposed to chemicals, moisture, or saltwater. FRP composites are also easy to install and require minimal disruption to the existing structure. They can be bonded to the surface of the structure using adhesives or mechanical fasteners, which can be installed quickly and easily, minimizing downtime and inconvenience. FRP composites have been successfully used in a variety of structural strengthening applications, including the reinforcement of concrete and masonry walls, beams, columns, and slabs. They can also be used to increase the seismic performance of structures, as they have high ductility and energy dissipation capacity. However, the design and implementation of FRP composites require careful consideration of various factors, including the type of fibre used, the properties of the polymer matrix, and the bonding between the composite and the existing structure. Therefore, it is important to follow established design guidelines and standards to ensure the effective and safe use of FRP composites in structural strengthening. In summary, FRP composites are a proven and reliable solution for the strengthening of existing structures, offering many advantages over traditional materials. With ongoing research and development, FRP composites are expected to continue to play a critical role in the field of structural strengthening.
At present, fibre-reinforced cementitious matrix (FRCM) composites are a relatively new type of composite material that is gaining popularity in the field of structural strengthening. FRCM composites consist of a cement-based matrix reinforced with high-strength fibres such as carbon, glass, or basalt fibres. The use of FRCM composites has several advantages over other, traditional strengthening materials such as steel or FRP composites. One of the main advantages of FRCM composites is their high resistance to corrosion, which makes them an ideal solution for strengthening concrete and masonry structures in harsh environments. They are also highly durable and can withstand extreme temperatures, making them suitable for use in areas prone to high heat or cold. FRCM composites are also more environmentally friendly than traditional strengthening materials. They can be made from sustainable materials, such as basalt fibres, which are extracted from volcanic rock. Additionally, FRCM composites are easily recycled and reused. FRCM composites have been successfully used in a variety of structural strengthening applications, including the reinforcement of walls, beams, columns, and slabs. They can also be used to increase the seismic performance of structures, as they have high ductility and energy dissipation capacity. However, the design and implementation of FRCM composites require careful consideration of various factors, including the type of fibre used, the properties of the cement matrix, and the bonding between the composite and the existing structure. Therefore, further research and development are needed to establish design guidelines and standards for the use of FRCM composites in structural strengthening. Overall, FRCM composites represent a promising solution for the strengthening of existing structures and are expected to gain more attention and be adopted more in the future.
This Special Issue aims to cover a wide range of topics related to the use of composites, including but not limited to: material properties, design criteria, modelling and simulation, experimental studies, case studies, and implementation strategies. The goal is to encourage authors to contribute high-quality original research papers, reviews, and perspectives that will advance the knowledge, innovation, and practical application of composites in structural strengthening.
Dr. Alessio Cascardi
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fibers is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- composite materials
- structural strengthening
- existing structures
- FRCM composites
- FRP composites
- high-strength fibers
- durability
- corrosion resistance
- design criteria
- implementation strategies
- seismic retrofitting
- performance evaluation
- modeling and simulation
- experimental studies
- sustainable materials
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.
Planned Papers
The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.
Title: Restoration of Continuous RC Beams Pre-Damaged by Corrosion Using FRCM Composites
Authors: Youssef Elmezayen; Tamer El-Maaddawy
Affiliation: Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University