Advanced Research on Micropollutants in Water, 2nd Edition

A special issue of Environments (ISSN 2076-3298).

Deadline for manuscript submissions: 25 July 2025 | Viewed by 1433

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
Interests: water treatment; advanced oxidation processes; membrane technology; ozonation; catalysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Micropollutants have the capacity to disturb physiological processes, resulting in unfavorable neurological, immune, developmental and reproductive effects in both humans and wildlife. These substances are frequently detected in aquatic ecosystems and encompass active pharmaceutical ingredients (APIs), personal care products (PCPs), pesticides, and microplastics. Understanding the sources, transport, and fate of micropollutants in the environment is crucial for developing effective strategies to mitigate their impacts. In natural waters exposed to sunlight (surface waters), solar-radiation-mediated degradation constitutes an important natural depuration process of micropollutants, especially those resistant to biological degradation. However, these natural processes might not be enough to remove such substances, and complementary remediation strategies must be explored. These strategies can include advanced wastewater treatment technologies, the development of best practices in agriculture and industry to reduce pollutant inputs, and policy measures to limit the release of micropollutants. This Special Issue seeks research papers dealing with advances in micropollutant detection, as well as their environmental fate and removal from waters, to provide a well-rounded and complete understanding of the topic.

The publications in the first volume, which we believe may be of interest to you, can be found here: https://www.mdpi.com/journal/environments/special_issues/R04U590V93.

Dr. Cátia Alexandra Leça Graça
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Environments is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • water quality monitoring
  • contaminant identification
  • wastewater management
  • environmental impact
  • discharge regulations
  • pollution control
  • water treatment
  • environmental destination
  • remediation technologies
  • integrated water management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3652 KiB  
Article
Antibiotic Adsorption by Microplastics: Effect of Weathering, Polymer Type, Size, and Shape
by Thomas Easton, Vaibhav Budhiraja, Yuanzhe He, Qi Zhang, Ayushi Arora, Vasileios Koutsos and Efthalia Chatzisymeon
Environments 2025, 12(4), 120; https://doi.org/10.3390/environments12040120 - 12 Apr 2025
Viewed by 276
Abstract
The interaction of microplastics (MPs) with organic micropollutants, such as antibiotics, facilitates their transport in aquatic environments, increasing mobility and toxicological risk. The diverse polymer types, sizes, and shapes in wastewater present a challenge in understanding the fate of persistent organic micropollutants. This [...] Read more.
The interaction of microplastics (MPs) with organic micropollutants, such as antibiotics, facilitates their transport in aquatic environments, increasing mobility and toxicological risk. The diverse polymer types, sizes, and shapes in wastewater present a challenge in understanding the fate of persistent organic micropollutants. This study examines ceftazidime adsorption on five polymer types—polyethylene terephthalate (PET), polyethylene (PE), hard and soft polystyrene (PS), hard and soft polyurethane (PU), and tyre wear particles (TWPs, including three passenger tyres and one truck tyre) in various forms (fibres, beads, foam, and fragments) and sizes (10–1000 µm). MPs underwent weathering (alkaline hydrolysis, UVC-activated H2O2, and Xenon lamp irradiation) to simulate environmental conditions. Their physical and chemical changes were analysed through mass loss, carbonyl index, scanning electron microscopy, and atomic force microscopy. The adsorption values (mg g−1) for pristine and weathered MPs, respectively, were as follows: PET (0.664 and 1.432), PE (0.210 and 0.234), hard PS (0.17 and 0.24), soft PS (0.53 and 0.48), hard PU (0.19), soft PU (0.17), and passenger TWPs—Bridgestone (0.212), Michelin (0.273), Goodyear (0.288), and Kumho truck TWPs (0.495). The highest and lowest adsorption were observed in weathered PET (1.432 mg g−1) and pristine hard PS/soft PU (0.17 mg g−1), respectively. Sorption kinetics and isothermal models showed that aged MPs exhibited higher sorption due to surface cracks, fragmentation, and increased adsorption sites. These findings enhance scientific knowledge of MP–antibiotic interactions in wastewater and can underpin studies to mitigate MP pollution and their adverse effects on the environment and humans. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water, 2nd Edition)
Show Figures

Figure 1

20 pages, 4815 KiB  
Article
Fungicides in English Rivers: Widening the Understanding of the Presence, Co-Occurrence and Implications for Risk Assessment
by Nick Porter and Rob Collins
Environments 2025, 12(2), 45; https://doi.org/10.3390/environments12020045 - 3 Feb 2025
Viewed by 901
Abstract
Fungicides are commonly found in freshwater; however, the understanding of their wider presence, co-occurrence, and potential risk remains limited. This study examined English national datasets to highlight knowledge gaps and identify improvements to monitoring and risk assessment. The analysis found that at least [...] Read more.
Fungicides are commonly found in freshwater; however, the understanding of their wider presence, co-occurrence, and potential risk remains limited. This study examined English national datasets to highlight knowledge gaps and identify improvements to monitoring and risk assessment. The analysis found that at least one fungicide was present in 91% of samples collected from English rivers over a 5-year period, with four fungicides detected at rates exceeding 50%. Co-occurrence occurs widely, with up to nine different fungicides detected within the same sample and four detected the most frequently, raising concerns for synergistic interactions. The semi-quantitative nature of much of the available data precludes a clear determination of the potential risk of detrimental effects on aquatic biota. Fully quantitative analysis is required, and ecotoxicity-based water quality standards need to be agreed upon. The monthly sampling regime reflected in the national datasets will infrequently capture high flow events and so is unlikely to fully represent fungicides transported to rivers via rainfall-driven processes. Several information gaps exist, including the risk posed by fungicides in sewage sludge applied to land and the extent to which fungicides in the aquatic and terrestrial environments contribute to antifungal resistance. Improvements in spatial and temporal information on fungicide use are needed. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water, 2nd Edition)
Show Figures

Figure 1

Back to TopTop