Biocolloids and Biointerfaces: 2nd Edition

Special Issue Editors


E-Mail Website
Guest Editor
Department of Interfacial Phenomena, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Sklodowska University, M.C.-Sklodowska Sq. 3/114, 20-031 Lublin, Poland
Interests: colloid and interface science; biomaterials and nanomaterials; liposomes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Chemistry, University of Bristol, Bristol BS8 1TH, UK
Interests: surface forces; friction; lubrication; lipids; liposomes; surfactants; self-assembly; coffee ring effects; nanostructured surfaces; polymer brushes; X-ray reflectivity; neutron scattering; biolubrication; bacterial membranes; nanotoxicity; deep eutectic solvents
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
Interests: immunobiophysics; soft condensed matter; engineering

Special Issue Information

Dear Colleagues,

Biocolloids and biointerfaces are key aspects in the multidisciplinary research field where the fundamentals of colloid and interface science meet naturally occurring or bioinspired systems. This multidisciplinary complexity demands insights and input from biology, pharmacy, and medicine, in addition to classic colloid and surface chemistry. Progress in this area will require collaboration from these different disciplines, creating scientific synergy. Such advancement of knowledge of biocolloids and biointerfaces is highly relevant and, indeed, urgent. This Special Issue, following the success of the first edition, aims to provide a forum for the dissemination of the latest information on aerosols to understand the infection route, the impact of particle-like viruses on the mucus layer in the lung, as formed and stabilized by pulmonary surfactants, the route for the treatment of lung diseases, and the design of face masks to optimize their efficacy.

Dr. Aleksandra Szcześ
Prof. Dr. Wuge Briscoe
Dr. Reinhard Miller
Dr. Milad Radiom
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Colloids and Interfaces is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioinspired colloids and interfaces
  • interfacial properties of adsorbed biosurfactants and biopolymers
  • pulmonary surfactants—micelles and vesicles as delivery systems
  • bacteria and viruses as colloidal systems
  • biochemical and tissue engineering
  • soft matter in food
  • model membranes
  • bioaerosols

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2350 KiB  
Article
Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses
by Vaishali Sharma, Sneha Singh, Natalie M. Nold, Supreet Kaur, Bowen Li and Caryn L. Heldt
Colloids Interfaces 2025, 9(1), 13; https://doi.org/10.3390/colloids9010013 - 14 Feb 2025
Viewed by 766
Abstract
The effectiveness of copper-based composites, specifically cupric ion (Cu2+)-modified phyllosilicate minerals, was evaluated in reducing the concentration of infectious agents in the environment while minimizing metal ion release. The phyllosilicate minerals, vermiculite, exfoliated and unexfoliated, and sepiolite, all modified with Cu [...] Read more.
The effectiveness of copper-based composites, specifically cupric ion (Cu2+)-modified phyllosilicate minerals, was evaluated in reducing the concentration of infectious agents in the environment while minimizing metal ion release. The phyllosilicate minerals, vermiculite, exfoliated and unexfoliated, and sepiolite, all modified with Cu2+, were compared with copper oxide for their antiviral activity against non-enveloped porcine parvovirus (PPV) and enveloped human coronavirus 229E (HCoV). Sepiolite effectively removed PPV and HCoV from the solution, regardless of Cu2+ presence, while vermiculite showed substantial viral clearance only when Cu2+ was present. The kinetics of viral clearance was fast, with complete clearance within one hour in many cases. To better understand the mechanism of virus clearance, EDTA was added at different times during the clearance study for PPV. EDTA prevented virus clearance in all vermiculite samples, whereas sepiolite containing copper still demonstrated substantial virus clearance. The addition of BSA before the virus binding was able to block binding in all cases. It was determined that binding is the key mechanism, and PPV can be eluted from the minerals with EDTA and still be infectious. This study provides the potent antiviral mechanisms of Cu2+-modified phyllosilicate minerals, offering insights for designing paints and plastics for high-touch surfaces to reduce viral transmission and enhance public health significantly. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

11 pages, 2190 KiB  
Article
Transient Electroosmosis on a Soft Surface
by Hiroyuki Ohshima
Colloids Interfaces 2025, 9(1), 12; https://doi.org/10.3390/colloids9010012 - 4 Feb 2025
Cited by 1 | Viewed by 920
Abstract
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring [...] Read more.
A general theory was developed for the time-dependent transient electroosmosis on a planar soft surface, i.e., a polyelectrolyte-coated solid surface in an electrolyte solution, when an electric field is suddenly applied. This serves as a simple model for the time-dependent electrokinetic phenomena occurring at biointerfaces. A closed-form approximate expression is derived for the electroosmotic velocity distribution within the polyelectrolyte layer as a function of both position and time. This analysis reveals that the temporal and spatial variations in the electroosmotic flow caused by the surface charges of the solid surface is confined to the region near the solid surface. In contrast, the variations due to the fixed charges within the polyelectrolyte layer extend over a wider region inside the polyelectrolyte layer. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Figure 1

10 pages, 1873 KiB  
Article
An Imine-Based Two-Dimensional Covalent Organic Framework for Gemcitabine Delivery
by Kajal Kaliya, Neha Bhardwaj, Ruchika and Ankit Saneja
Colloids Interfaces 2025, 9(1), 8; https://doi.org/10.3390/colloids9010008 - 21 Jan 2025
Cited by 1 | Viewed by 1002
Abstract
A 2D imine-linked covalent organic framework (COF) with good biocompatibility was synthesized using o-Dianisidine and 1,3,5-Triformylbenzene. The synthesized COF was characterized by using the Fourier transform infrared (FTIR), thermogravimetry analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized COF [...] Read more.
A 2D imine-linked covalent organic framework (COF) with good biocompatibility was synthesized using o-Dianisidine and 1,3,5-Triformylbenzene. The synthesized COF was characterized by using the Fourier transform infrared (FTIR), thermogravimetry analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized COF was subsequently utilized for the delivery of gemcitabine (Gem), an FDA-approved drug for the treatment of pancreatic cancer. The COF demonstrated a remarkable drug loading of 30 µg/mg and better drug release at pH 5.0. The biocompatibility of the COF was evaluated in the L929 (mouse fibroblast) cell line, while the cytotoxicity of the Gem-loaded COF (COF-Gem) was evaluated against the MIA-PaCa-2 and PANC-1 (pancreatic cancer) cell lines using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results indicated that the COF was safe at concentrations up to 200 µg/mL, while the COF-Gem led to superior cytotoxicity as compared to native Gem, with IC50 values of 8.1 ± 1.2 µM in MIA-PaCa-2 cells and 6.0 ± 1.3 µM in PANC-1 cells after 48 h. This study offers a new perspective of utilizing COF as a promising delivery system for Gem delivery. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1177 KiB  
Article
Transient Diffusiophoresis of a Spherical Colloidal Particle
by Hiroyuki Ohshima
Colloids Interfaces 2025, 9(1), 7; https://doi.org/10.3390/colloids9010007 - 19 Jan 2025
Cited by 1 | Viewed by 1239
Abstract
A general theoretical approach is introduced to analyze the time-dependent, transient diffusiophoresis of a charged spherical colloidal particle in a symmetrical electrolyte solution when an electrolyte concentration gradient is suddenly applied. We derive a closed-form approximate expression for the relaxation function R( [...] Read more.
A general theoretical approach is introduced to analyze the time-dependent, transient diffusiophoresis of a charged spherical colloidal particle in a symmetrical electrolyte solution when an electrolyte concentration gradient is suddenly applied. We derive a closed-form approximate expression for the relaxation function R(t), which describes the time course of the diffusiophoretic mobility of a weakly charged spherical colloidal particle possessing a thin electrical double layer. The relaxation function depends on the mass density ratio of the particle to the electrolyte solution and the kinematic viscosity. However, it does not depend on the type of electrolyte (e.g., KCl or NaCl). It is also found that the expression for the relaxation function in transient diffusiophoresis of a weakly charged spherical colloidal particle with a thin electrical double layer takes the same form as that for its transient electrophoresis. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Figure 1

15 pages, 1257 KiB  
Article
The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications
by Rushana Kushnazarova, Alla Mirgorodskaya, Dmitry Bekrenev, Denis Kuznetsov, Anna Lyubina, Alexandra Voloshina and Lucia Zakharova
Colloids Interfaces 2024, 8(5), 57; https://doi.org/10.3390/colloids8050057 - 17 Oct 2024
Viewed by 1333
Abstract
New hexadecylpiperidinium surfactants, containing one or two butylcarbamate fragments, were synthesized. The antimicrobial activity, toxicity, aggregation behavior in aqueous solutions, and solubilization capacity of these surfactants towards the hydrophobic drug ibuprofen were characterized. These surfactants demonstrated a high antimicrobial activity against a wide [...] Read more.
New hexadecylpiperidinium surfactants, containing one or two butylcarbamate fragments, were synthesized. The antimicrobial activity, toxicity, aggregation behavior in aqueous solutions, and solubilization capacity of these surfactants towards the hydrophobic drug ibuprofen were characterized. These surfactants demonstrated a high antimicrobial activity against a wide range of pathogenic bacteria, including both Gram-positive and Gram-negative strains, as well as fungi. By forming mixed-micellar compositions of the cationic surfactant 1-CB(Bu)-P-16 and the nonionic surfactant Brij®35, highly functional and low-toxic formulations were obtained. Furthermore, the transition from mixed micelles to niosomes was accomplished, enhancing their potential as drug delivery systems. Niosomes were found to be less toxic compared to mixed micelles, while also increasing the solubility of ibuprofen in water. The modification of niosomes with cationic surfactants made it possible to increase the stability of the system and improve the solubility of the drug. The data obtained indicate that these new carbamate-containing hexadecylpiperidinium surfactants have significant potential in biomedical applications, particularly in the formulation of advanced drug delivery systems. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

23 pages, 19550 KiB  
Article
Bio-Pesticidal Potential of Nanostructured Lipid Carriers Loaded with Thyme and Rosemary Essential Oils against Common Ornamental Flower Pests
by Alejandro Múnera-Echeverri, José Luis Múnera-Echeverri and Freimar Segura-Sánchez
Colloids Interfaces 2024, 8(5), 55; https://doi.org/10.3390/colloids8050055 - 12 Oct 2024
Cited by 2 | Viewed by 2056
Abstract
The encapsulation of essential oils (EOs) in nanostructured lipid carriers (NLCs) represents a modern and sustainable approach within the agrochemical industry. This research evaluated the colloidal properties and insecticidal activity of NLCs loaded with thyme essential oil (TEO-NLC) and rosemary essential oil (REO-NLC) [...] Read more.
The encapsulation of essential oils (EOs) in nanostructured lipid carriers (NLCs) represents a modern and sustainable approach within the agrochemical industry. This research evaluated the colloidal properties and insecticidal activity of NLCs loaded with thyme essential oil (TEO-NLC) and rosemary essential oil (REO-NLC) against three common arthropod pests of ornamental flowers: Frankliniella occidentalis, Myzus persicae, and Tetranychus urticae. Gas chromatography–mass spectrometry (GC-MS) analysis identified the major chemical constituents of the EOs, with TEO exhibiting a thymol chemotype and REO exhibiting an α-pinene chemotype. NLCs were prepared using various homogenization techniques, with high shear homogenization (HSH) providing the optimal particle size, size distribution, and surface electrical charge. A factorial design was employed to evaluate the effects of EO concentration, surfactant concentration, and liquid lipid/solid lipid ratio on the physicochemical properties of the nanosuspensions. The final TEO-NLC formulation had a particle size of 347.8 nm, a polydispersity index of 0.182, a zeta potential of −33.8 mV, an encapsulation efficiency of 71.9%, and a loading capacity of 1.18%. The REO-NLC formulation had a particle size of 288.1 nm, a polydispersity index of 0.188, a zeta potential of −34 mV, an encapsulation efficiency of 80.6%, and a loading capacity of 1.40%. Evaluation of contact toxicity on leaf disks showed that TEO-NLC exhibited moderate insecticidal activity against the western flower thrips and mild acaricidal activity against the two-spotted spider mite, while REO-NLC demonstrated limited effects. These findings indicate that TEO-NLCs show potential as biopesticides for controlling specific pests of ornamental flowers, and further optimization of the administration dosage could significantly enhance their effectiveness. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

Review

Jump to: Research

26 pages, 1518 KiB  
Review
A Mini-Review on Enhancing Solubility in Topical Hydrogel Formulations Using Solid Dispersion Technology for Poorly Water-Soluble Drugs
by Zaid Dahma, Covadonga Álvarez-Álvarez and Paloma Marina de la Torre-Iglesias
Colloids Interfaces 2025, 9(2), 17; https://doi.org/10.3390/colloids9020017 - 21 Mar 2025
Viewed by 504
Abstract
The solubility behavior of drugs is a critical factor in formulation development. Approximately 40–45% of new drugs face market entry challenges due to low water solubility. Enhancing drug bioavailability is thus essential in developing pharmaceutical dosage forms. Many biopharmaceutical class II and IV [...] Read more.
The solubility behavior of drugs is a critical factor in formulation development. Approximately 40–45% of new drugs face market entry challenges due to low water solubility. Enhancing drug bioavailability is thus essential in developing pharmaceutical dosage forms. Many biopharmaceutical class II and IV drugs are commonly prescribed to treat inflammations, infections, and pain from various pathologies. Their oral administration has several drawbacks, including significant first-pass liver effects, low bioavailability, and adverse gastrointestinal effects. Topical application has gained relevance due to its advantages in delivering drugs directly to the target site, avoiding gastrointestinal irritation, and increasing their effectiveness. However, topical hydrogel formulations with poorly water-soluble drugs face challenges related to the skin’s permeability. Therefore, preparing topical hydrogels using solid dispersions (SDs) is an effective strategy to enhance the dissolution rate of poorly soluble drugs, thereby improving their topical bioavailability. In this review, the concepts of SDs, topical delivery systems, and topical hydrogel formulations incorporating SDs, as well as their preparation methods, characterization, and applications, will be discussed. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

23 pages, 11733 KiB  
Review
Potentiating Virus-like Particles for Mucosal Vaccination Using Material Science Approaches
by Milad Radiom
Colloids Interfaces 2024, 8(6), 68; https://doi.org/10.3390/colloids8060068 - 12 Dec 2024
Viewed by 1271
Abstract
Virus-like particles (VLPs) exhibit such unique colloidal and structural properties that make them ideal candidates for various bio-nanotechnology applications, among which mucosal vaccination is particularly promising. However, since mucosal surfaces present harsh environments to VLPs, stabilization of VLP capsids or alternative delivery strategies [...] Read more.
Virus-like particles (VLPs) exhibit such unique colloidal and structural properties that make them ideal candidates for various bio-nanotechnology applications, among which mucosal vaccination is particularly promising. However, since mucosal surfaces present harsh environments to VLPs, stabilization of VLP capsids or alternative delivery strategies are necessary. Addressing these challenges requires interdisciplinary research, and the intersection of material science and immunology is presented in this review. Approaches such as crosslinking capsid coat proteins, incorporating VLPs in polymer matrices and hydrogels, or forming crystalline nano-/micro-structures show potential for developing muco-stable VLP vaccines or for delivering these vaccines in a sustainable manner. This review explores recent material science approaches that leverage VLPs as nanotools for various applications and with the potential for translation to mucosal vaccination. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Figure 1

Back to TopTop