Radiopharmaceuticals for Cancers

A special issue of Cancers (ISSN 2072-6694). This special issue belongs to the section "Cancer Drug Development".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 4884

Special Issue Editors


E-Mail Website
Guest Editor
Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
Interests: positron emission tomography; radiopharmaceutical therapy; drug discovery; theranostics; oncology

E-Mail Website
Guest Editor
Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
Interests: positron emission tomography; somatostatin receptor imaging; targeted radionuclide therapy; alpha particle; auger electron

Special Issue Information

Dear Colleagues,

We are seeing an unprecedented number of radiopharmaceuticals entering clinical settings for the diagnosis and treatment of cancers. The progress in the field is driven by advances in drug development, radioisotope production, synthetic chemistry, instrumentation, and image quantification. Several PET imaging agents targeting the estrogen receptor and prostate-specific membrane antigen have been approved for clinical use in the past two years, and clinical investigation is underway for other promising targets such as the fibroblast-activating protein. From a therapeutic perspective, there is rapid growth and adoption of beta emitters for treatment of neuroendocrine tumor and prostate cancer, and multiple novel radiopharmaceuticals including alpha emitters are on the horizon. Given the significant interest, from both academia and industry, we anticipate this accelerating trend for radiopharmaceutical development to continue. This special issue will highlight recent developments in diagnostic and therapeutic radiopharmaceuticals for cancers from bench to bedside. Original research papers, communications, or review articles are welcome for this Special Issue. 

Dr. Joseph Lau
Dr. Hwan Lee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • radiopharmaceutical
  • positron emission tomography
  • single photon emission computed tomography
  • targeted radionuclide therapy
  • dosimetry
  • cancer
  • in vitro and in vivo characterization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1295 KiB  
Article
Prediction of 177Lu-DOTATATE Therapy Outcomes in Neuroendocrine Tumor Patients Using Semi-Automatic Tumor Delineation on 68Ga-DOTATATE PET/CT
by Hwan Lee, Sarit T. Kipnis, Remy Niman, Sophia R. O’Brien, Jennifer R. Eads, Bryson W. Katona and Daniel A. Pryma
Cancers 2024, 16(1), 200; https://doi.org/10.3390/cancers16010200 - 31 Dec 2023
Cited by 5 | Viewed by 2410
Abstract
Background: Treatment of metastatic neuroendocrine tumors (NET) with 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) results in favorable response only in a subset of patients. We investigated the prognostic value of quantitative pre-treatment semi-automatic 68Ga-DOTATATE PET/CT analysis in NET patients treated with [...] Read more.
Background: Treatment of metastatic neuroendocrine tumors (NET) with 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) results in favorable response only in a subset of patients. We investigated the prognostic value of quantitative pre-treatment semi-automatic 68Ga-DOTATATE PET/CT analysis in NET patients treated with PRRT. Methods: The medical records of 94 NET patients who received at least one cycle of PRRT at a single institution were retrospectively reviewed. On each pre-treatment 68Ga-DOTATATE PET/CT, the total tumor volume (TTV), maximum tumor standardized uptake value for the patient (SUVmax), and average uptake in the lesion with the lowest radiotracer uptake (SUVmin) were determined with a semi-automatic tumor delineation method. Progression-free survival (PFS) and overall survival (OS) among the patients were compared based on optimal cutoff values for the imaging parameters. Results: On Kaplan–Meier analysis and univariate Cox regression, significantly shorter PFS was observed in patients with lower SUVmax, lower SUVmin, and higher TTV. On multivariate Cox regression, lower SUVmin and higher TTV remained predictive of shorter PFS. Only higher TTV was found to be predictive of shorter OS on Kaplan–Meier and Cox regression analyses. In a post hoc Kaplan–Meier analysis, patients with at least one high-risk feature (low SUVmin or high TTV) showed shorter PFS and OS, which may be the most convenient parameter to measure in clinical practice. Conclusions: The tumor volume and lowest lesion uptake on 68Ga-DOTATATE PET/CT can predict disease progression following PRRT in NET patients, with the former also predictive of overall survival. NET patients at risk for poor outcomes following PRRT can be identified with semi-automated quantitative analysis of 68Ga-DOTATATE PET/CT. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancers)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 847 KiB  
Review
Image-Guided Mesenchymal Stem Cell Sodium Iodide Symporter (NIS) Radionuclide Therapy for Glioblastoma
by Siddharth Shah and Brandon Lucke-Wold
Cancers 2024, 16(16), 2892; https://doi.org/10.3390/cancers16162892 - 20 Aug 2024
Cited by 2 | Viewed by 1541
Abstract
Background: Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional treatments based on surgery, chemotherapy, and radiation therapy only delay progression, and death is inevitable. Malignant glioma cells are resistant to traditional therapies, potentially due to a subpopulation of glioma stem cells that are invasive and capable of rapid regrowth. Methods: This is a literature review. The systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used in PubMed and the articles retrieved were published in peer-reviewed scientific journals and were associated with brain GBM cancer and the sodium iodide symporter (NIS). Additionally, the words ‘radionuclide therapy OR mesenchyma, OR radioiodine OR iodine-131 OR molecular imaging OR gene therapy OR translational imaging OR targeted OR theranostic OR symporter OR virus OR solid tumor OR combined therapy OR pituitary OR plasmid AND glioblastoma OR GBM OR GB OR glioma’ were also used in the appropriate literature databases of PubMed and Google Scholar. A total of 68,244 articles were found in this search on Mesenchymal Stem Cell Sodium Iodide Symporter and GBM. These articles were found till 2024. To study recent advances, a filter was added to include articles only from 2014 to 2024, duplicates were removed, and articles not related to the title were excluded. These came out to be 78 articles. From these, nine were not retrieved and only seven were selected after the removal of keyword mismatched articles. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. Results: As a result of their natural capacity to identify malignancies, MSCs are employed as tumor therapy vehicles. Because MSCs may be transplanted using several methods, they have been proposed as the ideal vehicles for NIS gene transfer. MSCs have been used as a delivery vector for anticancer drugs in many tumor models due to their capacity to move precisely to malignancies. Also, by directly injecting radiolabeled MSCs into malignant tumors, a therapeutic dosage of beta radiation may be deposited, with the added benefit that the tumor would only localize and not spread to the surrounding healthy tissues. Conclusion: The non-invasive imaging-based detection of glioma stem cells presents an alternate means to monitor the tumor and diagnose and evaluate recurrence. The sodium iodide symporter gene is a specific gene in a variety of human thyroid diseases that functions to move iodine into the cell. In recent years, an increasing number of studies related to the sodium iodide symporter gene have been reported in a variety of tumors and as therapeutic vectors for imaging and therapy. Gene therapy and nuclear medicine therapy for GBM provide a new direction. In all the preclinical studies reviewed, image-guided cell therapy led to greater survival benefits and, therefore, has the potential to be translated into techniques in glioblastoma treatment trials. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancers)
Show Figures

Figure 1

Back to TopTop