Language, Communication and the Brain—2nd Edition

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Neurolinguistics".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 1132

Special Issue Editor


E-Mail Website
Guest Editor
Department of Speech-Language-Hearing Sciences, University of Minnesota Twin Cities, Minneapolis, MN, USA
Interests: psycholinguistics; phonology; phonetics; speech; language processing; electroen-cephalography; stutter
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Speech production is a highly localized yet networked activity involving several brain centers. Psycholinguistic studies of language production identify semantic, phonological, and syntactic processes that are sensitive to temporal demands. Speech sensorimotor processes engage a network of neural centers in the left and right hemispheres. Both language and speech motor processes are supported by cognitive resources including the dorsal and ventral attention networks and verbal and non-verbal working memory processes. Finally, the limbic system motivates actions and conveys the suprasegmental and emotional aspects of speech. The aim of this Special Issue is to enhance our understanding of the different cognitive, linguistic, and sensorimotor processes and systems supporting speech production in neurotypical and neurodiverse speakers who experience communication disabilities.

We encourage submissions that provide a nuanced and enhanced understanding of the systems and processes and how they function in neurotypical and neurodiverse speakers. We welcome submissions of studies that are designed to address the intersectionality of age, sex, or other biological and non-biological (e.g., treatment effects) variables and their interactions with group membership in influencing speech and language production. Submissions can include data-driven studies on attentional effort, phonological working memory, executive functions, language planning, and sensorimotor mechanisms supporting speech. Alternatively, theoretical postulations on the neural processes and biological systems supporting speech and language production and/or augmented communication will also be considered. Submissions can include group designs with varying levels of experimental control, single-subject designs, behavioral measures, temporally and spatially sensitive neural measures, and artificial intelligence-driven innovative data analyses of behavioral and/or neural data that contribute uniquely to understanding speech production.

This is a 2nd edition of a previous Special Issue on the topic “Language, Communication and the Brain”. The previous version of the Special Issue was received with enthusiasm. As the topic is of interest and relevance to many fields including linguistics, psychology, speech language pathology, neuroscience, kinesiology, and other related fields, we hope to continue collecting papers on relevant topics identified here.

Dr. Jayanthi Sasisekaran
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cognitive
  • attention
  • working memory
  • executive functions
  • linguistic
  • language planning
  • speech production
  • fluency
  • sensorimotor
  • hearing
  • speech and language production
  • neurotypical
  • neurodiverse
  • autism
  • apraxia
  • dysarthria
  • stuttering
  • speech sound disorders
  • artificial intelligence
  • data science
  • theoretical
  • data-driven

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1580 KiB  
Article
Elucidating White Matter Contributions to the Cognitive Architecture of Affective Prosody Recognition: Evidence from Right Hemisphere Stroke
by Meyra S. Jackson, Yuto Uchida, Shannon M. Sheppard, Kenichi Oishi, Ciprian Crainiceanu, Argye E. Hillis and Alexandra Z. Durfee
Brain Sci. 2025, 15(7), 769; https://doi.org/10.3390/brainsci15070769 - 19 Jul 2025
Viewed by 242
Abstract
Background/Objectives: Successful discourse relies not only on linguistic but also on prosodic information. Difficulty recognizing emotion conveyed through prosody (receptive affective aprosodia) following right hemisphere stroke (RHS) significantly disrupts communication participation and personal relationships. Growing evidence suggests that damage to white matter [...] Read more.
Background/Objectives: Successful discourse relies not only on linguistic but also on prosodic information. Difficulty recognizing emotion conveyed through prosody (receptive affective aprosodia) following right hemisphere stroke (RHS) significantly disrupts communication participation and personal relationships. Growing evidence suggests that damage to white matter in addition to gray matter structures impairs affective prosody recognition. The current study investigates lesion–symptom associations in receptive affective aprosodia during RHS recovery by assessing whether disruptions in distinct white matter structures impact different underlying affective prosody recognition skills. Methods: Twenty-eight adults with RHS underwent neuroimaging and behavioral testing at acute, subacute, and chronic timepoints. Fifty-seven healthy matched controls completed the same behavioral testing, which comprised tasks targeting affective prosody recognition and underlying perceptual, cognitive, and linguistic skills. Linear mixed-effects models and multivariable linear regression were used to assess behavioral performance recovery and lesion–symptom associations. Results: Controls outperformed RHS participants on behavioral tasks earlier in recovery, and RHS participants’ affective prosody recognition significantly improved from acute to chronic testing. Affective prosody and emotional facial expression recognition were affected by external capsule and inferior fronto-occipital fasciculus lesions while sagittal stratum lesions impacted prosodic feature recognition. Accessing semantic representations of emotions implicated the superior longitudinal fasciculus. Conclusions: These findings replicate previously observed associations between right white matter tracts and affective prosody recognition and further identify lesion–symptom associations of underlying prosodic recognition skills throughout recovery. Investigation into prosody’s behavioral components and how they are affected by injury can help further intervention development and planning. Full article
(This article belongs to the Special Issue Language, Communication and the Brain—2nd Edition)
Show Figures

Figure 1

23 pages, 3253 KiB  
Article
Neural Effects of Creative Movement, General Movement, and Sedentary Play Interventions on Interpersonal Synchrony in Children with Autism Spectrum Disorder: A Preliminary fNIRS Study
by Wan-Chun Su, Daisuke Tsuzuki, Sudha Srinivasan and Anjana Bhat
Brain Sci. 2025, 15(7), 683; https://doi.org/10.3390/brainsci15070683 - 25 Jun 2025
Viewed by 364
Abstract
Background/Objectives: Children with Autism Spectrum Disorder (ASD) experience difficulties with interpersonal synchrony (IPS). While creative movement (CM) interventions have shown benefits for social, cognitive, and motor skills in children with ASD, the neural mechanisms underlying these improvements remain unclear. This pilot randomized control [...] Read more.
Background/Objectives: Children with Autism Spectrum Disorder (ASD) experience difficulties with interpersonal synchrony (IPS). While creative movement (CM) interventions have shown benefits for social, cognitive, and motor skills in children with ASD, the neural mechanisms underlying these improvements remain unclear. This pilot randomized control trial examined the behavioral and neural effects of CM, general movement (GM), and sedentary play (SP) interventions. Methods: Twenty-two children with ASD (Mean Age ± SE = 8.7 ± 1.9) participated. Functional Near-Infrared Spectroscopy (fNIRS) was used to measure cortical activation during a drumming synchrony task before and after 8 weeks of intervention. Results: The CM group demonstrated significant improvements in IPS and the most widespread increases in socially enhanced activation across the left middle frontal gyrus (MFG), inferior frontal gyrus (IFG), and superior temporal sulcus (STS). The GM group showed increased activation in the left IFG, while the SP group showed enhanced activation in the left STS. Children with lower baseline adaptive functioning and social responsiveness showed greater IPS improvement. Conclusions: These findings provide preliminary evidence for the efficacy of CM in improving IPS in children with ASD and support the use of fNIRS to capture neural effects following interventions. Full article
(This article belongs to the Special Issue Language, Communication and the Brain—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop