Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis
Abstract
:1. Introduction
2. Fundamentals of Electrochemical Immunosensors for OP Detection
2.1. Principles of Electrochemical Detection
2.2. Common Electrode Materials and Immobilization Strategies
2.3. Signal Generation and Amplification Approaches
2.4. Broader Applications of Electrochemical Immunosensing Principles
3. Enhancing Sensitivity
3.1. Nanomaterial-Based Signal Amplification
3.1.1. Metal Nanoparticles
3.1.2. Carbon Nanomaterials
3.2. Enzyme-Based Amplification Strategies
3.3. Three-Dimensional Electrode Architectures
4. Novel Sensing Platforms and Fabrication Methods
4.1. Microfluidic and Lab-on-a-Chip Devices
4.2. Screen-Printed and Disposable Electrodes
4.3. Integration of Artificial Intelligence (AI) and Internet of Things (IoT)
5. Challenges and Future Perspectives
Sensor | Analyte | LDR | LOD | Real Sample | Ref. |
---|---|---|---|---|---|
GCE/SWNTs/PEG/FDMA/paraoxon hapten/anti-paraoxon IgG | Paraoxon | 2 to 2500 ppb | 2 ppb | Field water, lake water, tap water, and purified water | [29] |
GCE/AuNPs/paraoxon antibodies | Paraoxon | 24 to 1920 mg/L | 12 mg/L | River water samples | [100] |
Au-SPEs/SAM/AChE | Paraoxon | Up to 40 ppb | 2 ppb | Drinking water samples and a sample from the Sacco River | [35] |
GCE/SiSG/anti-carbofuran antibody | Carbofuran | 1 ng/mL to 100 μg/mL and from 50 μg/mL to 200 μg/mL | 0.33 ng/mL | Cabbage and lettuce | [101] |
GCE/DpAu/PB-MWCNTs-CTS/Protein A | Carbofuran | 0.1 ng/mL to 1 µg/mL | 0.021 ng/mL | Cabbage and lettuce | [102] |
GCE/MWCNTs/GS-PEI-Au/AuNPs-Ab | Carbofuran | 0.5 to 500 ng/mL | 0.03 ng/mL | Cabbages, green peppers, tomatoes, Chinese chives, and peaches | [103] |
Au/L-Cys/GA/carbofuran antibodies | Carbofuran | 0.1 to 1000 ng/mL | 0.1 ng/mL | Tomato, cabbage, lettuce, soil, and water | [104] |
Au/L-Cys/GNPs/anti-carbofuran/HRP | Carbofuran | 0.01 ng/mL to 50 ng/mL | 0.01 ng/mL | Cabbage and lettuce | [105] |
Au/DpAu/Protein A/carbofuran antibodies | Carbofuran | 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL | 0.1924 ng/mL | Chinese chives and celery cabbage | [106] |
GCE/GNPs/Fe3O4-FCNTs-CS/anti-carbofuran antibody | Carbofuran | 1.0 ng/mL to 100.0 ng/mL and 100.0 ng/mL to 200 μg/mL | 0.032 ng/mL | Cabbage | [107] |
SPE/HRP/atrazine antibody/Biodyne C membranes | Atrazine | - | 0.012 mg/L | Water samples from the Yarqon River in Israel | [72] |
SPE/AuNP/mAb | IMD | 50 to 10,000 pM | 22 pM | Tap water and watermelon samples | [85] |
SPE/citric acid-decorated nylon nanofibers/Nb-ALP | 3-Phenoxybenzoic acid | 0.8 to 1000 pg/mL | 0.64 pg/mL | Human urine samples | [86] |
GCE/SWCNTs/antibodies | Endosulfan and paraoxon | 2 to 2500 ppb. | 0.05 ppb | Environmental water samples | [62] |
SPE/graphene/2-ABA/anti-parathion antibodies | Parathion | 0.1 to 1000 ng/L | 52 pg/L | Tomato and carrot samples | [67] |
SPE/GQDs/anti-parathion antibodies | Parathion | 0.1 to 106 ng/L | 46 pg/L | Environmental and food samples | [68] |
GCE/3D Au nanoclusters/BSA–picloram | Picloram | 0.001 to 10 µg/mL | 0.0005 µg/mL | Peach and excess sludge supernatant samples | [74] |
FTO/GO/monocrotophos antibodies | Monocrotophos | - | 0.49 ppm | Vegetable extracts and pond water | [69] |
SPE/AuNP-Abs/PB | OPs (not specific) | 1.82 × 10−3 to 3.29 × 104 ng/mL | 0.003 ng/mL | Baby cabbages and spinach | [30] |
GCE/NBCQDs@GO/mAb3C9 antibody/phage-mimotope M31/anti-M13 mAb-HRP | O,O-dimethyl OPs | 0.005 to 500 ng/mL | 0.003–0.014 ng/mL for 9 O,O-dimethyl OPs | Cucumber, cabbage, and lettuce | [36] |
GCE/AuNPs/PANI/MWCNTs/CS/anti-CPF antibody | CPF | - | - | Fruits and vegetables | [31] |
Ab/AuNP/HRP/GCE | CPF | 0.001 to 10 ng/mL | 0.070 pg/mL | Chinese cabbage and lettuce | [71] |
GCE/Q-PDANSs/anti-CPF antibody/multi-HRP-CNTs@f-Fe3O4-Ab2 | CPF | 0.01 to 1000 ng/mL | 6.3 pg/mL | Pond water from farmland in South China Agricultural University | [47] |
GraFET/Cr/Au | CPF | 1 fM to 1 µM | 1.8 fM | - | [81] |
IDAM/PDDA/AuNPs/Protein A/anti-CPF | CPF | 0.5 to 500 ng/mL | 0.5 ng/mL | Cucumber, lettuce, and pakchoi | [80] |
ITO/Co3O4/PAn/CPF-BSA antigen and CPF monoclonal antibodies | CPF | 0 to 10 μg/mL | 0.01 μg/mL | Green vegetables and apples | [59] |
FTO-AuNPs-chl-Ab | CPF | 1 fM to 1 μM | 10 fM | Apple, cabbage, and pomegranate | [56] |
SPE/PVA/G-AuNPs NFM/Nb8F | Quinalphos | 0.06 to 1000 ng/mL | 50.74 pg/mL | Lettuce and cucumber | [42] |
GCE/chitosan/glutaraldehyde/fenvalerate monoclonal antibodies | Fenvalerate | 1.0 × 10−3 to 1.0 × 10−1 mg/L | 0.8 μg/L | Tea samples | [37] |
SPE/PVA/CA NFM/VHH9-HRP | Parathion | 0.01 to 100 ng/mL | 2.26 pg/mL | Cucumber, orange, and Chinese cabbage | [43] |
SPE/anti-TCP mouse antibody/HRP conjugated to HTCP | TCP | 0.1 to 100 ng/mL | 0.1 ng/mL | Rat plasma samples from rats exposed to CPF-oxon in vivo | [44] |
GGE/Hap-Car-BSA@CuNPs conjugate | Carbaryl | 0.8 to 32.3 μg/kg | 0.08 μg/kg | Wheat, corn, and oats | [57] |
SPE/ZrO2 NPs/Anti-BChE antibody/QDs | OP-BChE | 0.1 to 30 nM | 0.03 nM | Human plasma samples | [45] |
SPE/Fe3O4@TiO2/QDs-anti-BChE | OP-BChE | 0.02 to 10 nM | 0.01 nM | Human plasma samples | [60] |
SPE/ZrO2 NPs/LPA-anti-AChE | OP-AChE | 0.05 to 10 nM | 0.02 nM | Rat plasma samples | [58] |
SPE/MWCNTs-Au/anti-AChE antibody | OP-AChE | 0.2 to 50 nM | 0.05 nM | Paraoxon-dosed red blood cell samples | [63] |
SPE/ZrO2 NPs/QDs/anti-AChE antibody | OP-AChE | 10 pM to 4 nM | 8.0 pM | Human plasma | [108] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karbelkar, A.A.; Reynolds, E.E.; Ahlmark, R.; Furst, A.L. A Microbial Electrochemical Technology to Detect and Degrade Organophosphate Pesticides. ACS Cent. Sci. 2021, 7, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, A.; Vashishth, R.; Singh, S.; Surendran, U.; James, A.; Chellam, P.V. Biosensors for Detection of Organophosphate Pesticides: Current Technologies and Future Directives. Microchem. J. 2022, 178, 107420. [Google Scholar] [CrossRef]
- Patel, H.; Rawtani, D.; Agrawal, Y.K. A Newly Emerging Trend of Chitosan-Based Sensing Platform for the Organophosphate Pesticide Detection Using Acetylcholinesterase—A Review. Trends Food Sci. Technol. 2019, 85, 78–91. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Obare, S.O.; Wei, J. Molecularly Imprinted Polymers as Chemosensors for Organophosphate Pesticide Detection and Environmental Applications. TrAC Trends Anal. Chem. 2023, 167, 117231. [Google Scholar] [CrossRef]
- Bhattu, M.; Verma, M.; Kathuria, D. Recent Advancements in the Detection of Organophosphate Pesticides: A Review. Anal. Methods 2021, 13, 4390–4428. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. In Situ Ionic Liquid Dispersive Liquid-Liquid Microextraction Coupled to Gas Chromatography-Mass Spectrometry for the Determination of Organophosphorus Pesticides. J. Chromatogr. A 2018, 1559, 95–101. [Google Scholar] [CrossRef]
- Rösch, A.; Beck, B.; Hollender, J.; Singer, H. Picogram per Liter Quantification of Pyrethroid and Organophosphate Insecticides in Surface Waters: A Result of Large Enrichment with Liquid–Liquid Extraction and Gas Chromatography Coupled to Mass Spectrometry Using Atmospheric Pressure Chemical Ionization. Anal. Bioanal. Chem. 2019, 411, 3151–3164. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, R.; Rani, S.; Malik, A.K.; Kabir, A.; Furton, K.G. Application of Fabric Phase Sorptive Extraction with Gas Chromatography and Mass Spectrometry for the Determination of Organophosphorus Pesticides in Selected Vegetable Samples. J. Sep. Sci. 2019, 42, 862–870. [Google Scholar] [CrossRef]
- Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 2019, 9, 86. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical Immunosensors—A Powerful Tool for Analytical Applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef]
- Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, J.; Huang, R.; Wang, D.; Deng, D.; Zhang, Q.; Luo, L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023, 28, 3605. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, A.; Aishwarya, S.; Sathyamoorthi, S. Emerging Technologies for Sensitive Detection of Organophosphate Pesticides: A Review. Curr. Anal. Chem. 2024, 20, 383–409. [Google Scholar] [CrossRef]
- Chaudhari, P.; Chau, L.-K.; Ngo, L.T.; Chang, T.-C.; Chen, Y.-L.; Huang, K.-T. Competitive Assay for the Ultrasensitive Detection of Organophosphate Pesticides Based on a Fiber-Optic Particle Plasmon Resonance Biosensor and an Acetylcholinesterase Binding Peptide. Anal. Chem. 2023, 95, 14600–14607. [Google Scholar] [CrossRef] [PubMed]
- Arsawiset, S.; Sansenya, S.; Teepoo, S. Nanozymes Paper−based Analytical Device for the Detection of Organophosphate Pesticides in Fruits and Vegetables. Anal. Chim. Acta 2023, 1267, 341377. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Liu, B.; Huang, Z.-Z.; Yang, H.; Tan, H. Portable Hydrogel Test Kit Integrated Dual-Emission Coordination Polymer Nanocomposite for on-Site Detection of Organophosphate Pesticides. Biosens. Bioelectron. 2023, 220, 114890. [Google Scholar] [CrossRef]
- Cho, I.-H.; Lee, J.; Kim, J.; Kang, M.; Paik, J.K.; Ku, S.; Cho, H.-M.; Irudayaraj, J.; Kim, D.-H. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors 2018, 18, 207. [Google Scholar] [CrossRef]
- Police Patil, A.V.; Chuang, Y.-S.; Li, C.; Wu, C.-C. Recent Advances in Electrochemical Immunosensors with Nanomaterial Assistance for Signal Amplification. Biosensors 2023, 13, 125. [Google Scholar] [CrossRef]
- Kurup, C.P.; Mohd-Naim, N.F.; Ahmed, M.U. Recent Trends in Nanomaterial-Based Signal Amplification in Electrochemical Aptasensors. Crit. Rev. Biotechnol. 2022, 42, 794–812. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, D.; Zhou, Q.; Zhao, J.; Pan, N.; Zhang, Y.; Wang, L.; Shen, Y. An Enzyme Cascade-Based Electrochemical Immunoassay Using a Polydopamine–Carbon Nanotube Nanocomposite for Signal Amplification. J. Mater. Chem. B 2018, 6, 8180–8187. [Google Scholar] [CrossRef]
- Cancelliere, R.; Paialunga, E.; Grattagliano, A.; Micheli, L. Label-Free Electrochemical Immunosensors: A Practical Guide. TrAC Trends Anal. Chem. 2024, 180, 117949. [Google Scholar] [CrossRef]
- Turco, A.; Primiceri, E.; Chiriacò, M.S.; La Pesa, V.; Ferrara, F.; Riva, N.; Quattrini, A.; Romano, A.; Maruccio, G. Advancing Amyotrophic Lateral Sclerosis Disease Diagnosis: A Lab-on-Chip Electrochemical Immunosensor for Ultra-Sensitive TDP-43 Protein Detection and Monitoring in Serum Patients’. Talanta 2024, 273, 125866. [Google Scholar] [CrossRef] [PubMed]
- Felemban, S.; Vazquez, P.; Balbaied, T.; Moore, E. Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation. Electrochem 2022, 3, 570–580. [Google Scholar] [CrossRef]
- Lopes, P.; Costa-Rama, E.; Beirão, I.; Nouws, H.P.A.; Santos-Silva, A.; Delerue-Matos, C. Disposable Electrochemical Immunosensor for Analysis of Cystatin C, a CKD Biomarker. Talanta 2019, 201, 211–216. [Google Scholar] [CrossRef]
- Kämäräinen, S.; Mäki, M.; Tolonen, T.; Palleschi, G.; Virtanen, V.; Micheli, L.; Sesay, A.M. Disposable Electrochemical Immunosensor for Cortisol Determination in Human Saliva. Talanta 2018, 188, 50–57. [Google Scholar] [CrossRef]
- Kabay, G.; Yin, Y.; Singh, C.K.; Ahmad, N.; Gunasekaran, S.; Mutlu, M. Disposable Electrochemical Immunosensor for Prostate Cancer Detection. Sens. Actuators B Chem. 2022, 360, 131667. [Google Scholar] [CrossRef]
- Lee, D.; Bhardwaj, J.; Jang, J. Paper-Based Electrochemical Immunosensor for Label-Free Detection of Multiple Avian Influenza Virus Antigens Using Flexible Screen-Printed Carbon Nanotube-Polydimethylsiloxane Electrodes. Sci. Rep. 2022, 12, 2311. [Google Scholar] [CrossRef] [PubMed]
- Abera, B.D.; Falco, A.; Ibba, P.; Cantarella, G.; Petti, L.; Lugli, P. Development of Flexible Dispense-Printed Electrochemical Immunosensor for Aflatoxin M1 Detection in Milk. Sensors 2019, 19, 3912. [Google Scholar] [CrossRef]
- Liu, G.; Song, D.; Chen, F. Towards the Fabrication of a Label-Free Amperometric Immunosensor Using SWNTs for Direct Detection of Paraoxon. Talanta 2013, 104, 103–108. [Google Scholar] [CrossRef]
- Dong, H.; Zhao, Q.; Li, J.; Xiang, Y.; Liu, H.; Guo, Y.; Yang, Q.; Sun, X. Broad-Spectrum Electrochemical Immunosensor Based on One-Step Electrodeposition of AuNP–Abs and Prussian Blue Nanocomposite for Organophosphorus Pesticide Detection. Bioprocess Biosyst. Eng. 2021, 44, 585–594. [Google Scholar] [CrossRef]
- Ding, J.; Guo, Y.; Jia, H.; Qiao, L.; Sun, X.; Wang, X. A Portable Pesticide Residues Detection Instrument Based on Impedance Immunosensor. Sens. Transducers 2014, 172, 27. [Google Scholar]
- Qiao, L.; Jia, H.; Sun, X.; Wang, X. Recent Advance of Electrochemical Immunosensor for Pesticide Residues Detection. Sens. Transducers 2014, 164, 6. [Google Scholar]
- Diauudin, F.N.; Rashid, J.I.A.; Knight, V.F.; Wan Yunus, W.M.Z.; Ong, K.K.; Kasim, N.A.M.; Abdul Halim, N.; Noor, S.A.M. A Review of Current Advances in the Detection of Organophosphorus Chemical Warfare Agents Based Biosensor Approaches. Sens. Bio-Sens. Res. 2019, 26, 100305. [Google Scholar] [CrossRef]
- Suri, C.R.; Raje, M.; Varshney, G.C. Immunosensors for Pesticide Analysis: Antibody Production and Sensor Development. Crit. Rev. Biotechnol. 2002, 22, 15–32. [Google Scholar] [CrossRef]
- Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase Biosensor Based on Self-Assembled Monolayer-Modified Gold-Screen Printed Electrodes for Organophosphorus Insecticide Detection. Sens. Actuators B Chem. 2013, 179, 201–208. [Google Scholar] [CrossRef]
- Shi, R.; Zou, W.; Zhao, Z.; Wang, G.; Guo, M.; Ai, S.; Zhou, Q.; Zhao, F.; Yang, Z. Development of a Sensitive Phage-Mimotope and Horseradish Peroxidase Based Electrochemical Immunosensor for Detection of O,O-Dimethyl Organophosphorus Pesticides. Biosens. Bioelectron. 2022, 218, 114748. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Viana, A.S.; Jin, G.; Abrantes, L.M. Immunosensor Interface Based on Physical and Chemical Immunoglobulin G Adsorption onto Mixed Self-Assembled Monolayers. Bioelectrochemistry 2006, 69, 180–186. [Google Scholar] [CrossRef]
- Garcinuño, B.; Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Amperometric Immunosensor for the Determination of Ceruloplasmin in Human Serum and Urine Based on Covalent Binding to Carbon Nanotubes-Modified Screen-Printed Electrodes. Talanta 2014, 118, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Jiang, L.; Chu, P.K.; Dong, Y.; Wei, Q. A Sandwich-Type Electrochemical Immunosensor Based on the Biotin- Streptavidin-Biotin Structure for Detection of Human Immunoglobulin G. Sci. Rep. 2016, 6, 22694. [Google Scholar] [CrossRef]
- Patel, M.; Agrawal, M.; Srivastava, A. Signal Amplification Strategies in Electrochemical Biosensors via Antibody Immobilization and Nanomaterial-Based Transducers. Mater. Adv. 2022, 3, 8864–8885. [Google Scholar] [CrossRef]
- Radecka, H.; Radecki, J. Label-Free Electrochemical Immunosensors for Viruses and Antibodies Detection-Review. J. Mex. Chem. Soc. 2015, 59, 269–275. [Google Scholar] [CrossRef]
- Hu, J.; Wen, P.; Wang, Y.; Yang, J.; Xiao, Z.; Xu, Z.; Shen, Y.; Wang, H.; Hammock, B.D. Fabrication of a Label-Free Electrochemical Immunosensor by Functionalized Nanofiber Membrane for the Ultrasensitive Detection of Quinalphos. Food Control 2024, 162, 110423. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, J.; Wang, H.; Wang, Y.; Zeng, X.; Xu, Z.; Yang, J.; Xiao, Z.; Hammock, B.D.; Wen, P. A Highly Sensitive Electrochemical Immunosensor Based on Electrospun Nanocomposite for the Detection of Parathion. Food Chem. 2023, 404, 134371. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, D.; Wang, J.; Du, D.; Zou, Z.; Wang, H.; Smith, J.N.; Timchalk, C.; Liu, F.; Lin, Y. A Novel Immunochromatographic Electrochemical Biosensor for Highly Sensitive and Selective Detection of Trichloropyridinol, a Biomarker of Exposure to Chlorpyrifos. Biosens. Bioelectron. 2011, 26, 2835–2840. [Google Scholar] [CrossRef]
- Lu, D.; Wang, J.; Wang, L.; Du, D.; Timchalk, C.; Barry, R.; Lin, Y. A Novel Nanoparticle-Based Disposable Electrochemical Immunosensor for Diagnosis of Exposure to Toxic Organophosphorus Agents. Adv. Funct. Mater. 2011, 21, 4371–4378. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z. A Cascade Reaction Signal-Amplified Amperometric Immunosensor Platform for Ultrasensitive Detection of Tumour Marker. Sens. Actuators B Chem. 2018, 254, 642–647. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, W.; Wen, H.; Gan, C.; Lei, H.; Liu, Y. Sensitive Electrochemical Immunoassay for Chlorpyrifos by Using Flake-like Fe3O4 Modified Carbon Nanotubes as the Enhanced Multienzyme Label. Anal. Chim. Acta 2015, 899, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, E.C.; Torres, E.; Bettazzi, F.; Palchetti, I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Biosensors 2019, 9, 20. [Google Scholar] [CrossRef]
- Ding, R.; Li, Z.; Xiong, Y.; Wu, W.; Yang, Q.; Hou, X. Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based on Nanomaterial-Modified Electrodes: A Review. Crit. Rev. Anal. Chem. 2023, 53, 1766–1791. [Google Scholar] [CrossRef]
- Uniyal, S.; Sharma, R.K. Technological Advancement in Electrochemical Biosensor Based Detection of Organophosphate Pesticide Chlorpyrifos in the Environment: A Review of Status and Prospects. Biosens. Bioelectron. 2018, 116, 37–50. [Google Scholar] [CrossRef]
- Carneiro, P.; Loureiro, J.A.; Delerue-Matos, C.; Morais, S.; do Carmo Pereira, M. Nanostructured Label–Free Electrochemical Immunosensor for Detection of a Parkinson’s Disease Biomarker. Talanta 2023, 252, 123838. [Google Scholar] [CrossRef] [PubMed]
- Boonkaew, S.; Teengam, P.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O. Cost-Effective Paper-Based Electrochemical Immunosensor Using a Label-Free Assay for Sensitive Detection of Ferritin. Analyst 2020, 145, 5019–5026. [Google Scholar] [CrossRef] [PubMed]
- Surappa, S.; Multani, P.; Parlatan, U.; Sinawang, P.D.; Kaifi, J.; Akin, D.; Demirci, U. Integrated “Lab-on-a-Chip” Microfluidic Systems for Isolation, Enrichment, and Analysis of Cancer Biomarkers. Lab Chip 2023, 23, 2942–2958. [Google Scholar] [CrossRef] [PubMed]
- Akbari Nakhjavani, S.; Afsharan, H.; Khalilzadeh, B.; Ghahremani, M.H.; Carrara, S.; Omidi, Y. Gold and Silver Bio/Nano-Hybrids-Based Electrochemical Immunosensor for Ultrasensitive Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2019, 141, 111439. [Google Scholar] [CrossRef]
- Yang, G.; Lai, Y.; Xiao, Z.; Tang, C.; Deng, Y. Ultrasensitive Electrochemical Immunosensor of Carcinoembryonic Antigen Based on Gold-Label Silver-Stain Signal Amplification. Chin. Chem. Lett. 2018, 29, 1857–1860. [Google Scholar] [CrossRef]
- Talan, A.; Mishra, A.; Eremin, S.A.; Narang, J.; Kumar, A.; Gandhi, S. Ultrasensitive Electrochemical Immuno-Sensing Platform Based on Gold Nanoparticles Triggering Chlorpyrifos Detection in Fruits and Vegetables. Biosens. Bioelectron. 2018, 105, 14–21. [Google Scholar] [CrossRef]
- Dorozhko, E.V.; Gashevskay, A.S.; Korotkova, E.I.; Barek, J.; Vyskocil, V.; Eremin, S.A.; Galunin, E.V.; Saqib, M. A Copper Nanoparticle-Based Electrochemical Immunosensor for Carbaryl Detection. Talanta 2021, 228, 122174. [Google Scholar] [CrossRef]
- Du, D.; Chen, A.; Xie, Y.; Zhang, A.; Lin, Y. Nanoparticle-Based Immunosensor with Apoferritin Templated Metallic Phosphate Label for Quantification of Phosphorylated Acetylcholinesterase. Biosens. Bioelectron. 2011, 26, 3857–3863. [Google Scholar] [CrossRef]
- Wang, W.; Han, Z.; Liang, P.; Guo, D.; Xiang, Y.; Tian, M.; Song, Z.; Zhao, H. Co3O4/PAn Magnetic nanoparticle-modified electrochemical immunosensor for chlorpyrifos. Dig. J. Nanomater. Biostruct. (DJNB) 2017, 12, 1–9. [Google Scholar]
- Zhang, X.; Wang, H.; Yang, C.; Du, D.; Lin, Y. Preparation, Characterization of Fe3O4 at TiO2 Magnetic Nanoparticles and Their Application for Immunoassay of Biomarker of Exposure to Organophosphorus Pesticides. Biosens. Bioelectron. 2013, 41, 669–674. [Google Scholar] [CrossRef]
- Sobhan, A.; Jia, F.; Kelso, L.C.; Biswas, S.K.; Muthukumarappan, K.; Cao, C.; Wei, L.; Li, Y. A Novel Activated Biochar-Based Immunosensor for Rapid Detection of E. coli O157:H7. Biosensors 2022, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, W.; Song, D. A Multianalyte Electrochemical Immunosensor Based on Patterned Carbon Nanotubes Modified Substrates for Detection of Pesticides. Biosens. Bioelectron. 2014, 52, 360–366. [Google Scholar] [CrossRef]
- Chen, A.; Du, D.; Lin, Y. Highly Sensitive and Selective Immuno-Capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents. Environ. Sci. Technol. 2012, 46, 1828–1833. [Google Scholar] [CrossRef]
- Yang, M.; Javadi, A.; Li, H.; Gong, S. Ultrasensitive Immunosensor for the Detection of Cancer Biomarker Based on Graphene Sheet. Biosens. Bioelectron. 2010, 26, 560–565. [Google Scholar] [CrossRef]
- Li, B.; Tan, H.; Jenkins, D.; Srinivasa Raghavan, V.; Rosa, B.G.; Güder, F.; Pan, G.; Yeatman, E.; Sharp, D.J. Clinical Detection of Neurodegenerative Blood Biomarkers Using Graphene Immunosensor. Carbon 2020, 168, 144–162. [Google Scholar] [CrossRef]
- Andoy, N.M.; Filipiak, M.S.; Vetter, D.; Gutiérrez-Sanz, Ó.; Tarasov, A. Graphene-Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Adv. Mater. Technol. 2018, 3, 1800186. [Google Scholar] [CrossRef]
- Mehta, J.; Vinayak, P.; Tuteja, S.K.; Chhabra, V.A.; Bhardwaj, N.; Paul, A.K.; Kim, K.-H.; Deep, A. Graphene Modified Screen Printed Immunosensor for Highly Sensitive Detection of Parathion. Biosens. Bioelectron. 2016, 83, 339–346. [Google Scholar] [CrossRef]
- Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Tuteja, S.K.; Vinayak, P.; Paul, A.K.; Kim, K.-H.; Deep, A. Graphene Quantum Dot Modified Screen Printed Immunosensor for the Determination of Parathion. Anal. Biochem. 2017, 523, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shrikrishna, N.S.; Kolhe, P.; Gandhi, S. Sensitive Detection of Monocrotophos Using a Voltametric Immunosensor with Randomly Layered Graphene Oxide (GO) on Fabricated Electrode. J. Environ. Chem. Eng. 2024, 12, 112059. [Google Scholar] [CrossRef]
- Cancelliere, R.; Cosio, T.; Campione, E.; Corvino, M.; D’Amico, M.P.; Micheli, L.; Signori, E.; Contini, G. Label-Free Electrochemical Immunosensor as a Reliable Point-of-Care Device for the Detection of Interleukin-6 in Serum Samples from Patients with Psoriasis. Front. Chem. 2023, 11, 1251360. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, X.; Kong, M.; Jiang, G.; Sun, Y.; Mo, W.; Lin, T.; Ye, F.; Zhao, S. A Competitive Immunoassay for Electrochemical Impedimetric Determination of Chlorpyrifos Using a Nanogold-Modified Glassy Carbon Electrode Based on Enzymatic Biocatalytic Precipitation. Microchim. Acta 2020, 187, 204. [Google Scholar] [CrossRef] [PubMed]
- Keay, R.W.; McNeil, C.J. Separation-Free Electrochemical Immunosensor for Rapid Determination of Atrazine. Biosens. Bioelectron. 1998, 13, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Chansi; Bhardwaj, R.; Rao, R.P.; Mukherjee, I.; Agrawal, P.K.; Basu, T.; Bharadwaj, L.M. Layered Construction of Nano Immuno-Hybrid Embedded MOF as an Electrochemical Sensor for Rapid Quantification of Total Pesticides Load in Vegetable Extract. J. Electroanal. Chem. 2020, 873, 114386. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, G.; Zhang, Y.; Tang, L.; Huang, D.; Liu, C.; Pang, Y.; Luo, J. Trace Detection of Picloram Using an Electrochemical Immunosensor Based on Three-Dimensional Gold Nanoclusters. Anal. Biochem. 2010, 407, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, T.; Bagheri, H.; Behbahani, M.; Hajian, A.; Afkhami, A. Modified 3D Graphene-Au as a Novel Sensing Layer for Direct and Sensitive Electrochemical Determination of Carbaryl Pesticide in Fruit, Vegetable, and Water Samples. Food Anal. Methods 2018, 11, 3005–3014. [Google Scholar] [CrossRef]
- Gokila, N.; Haldorai, Y.; Saravanan, P.; Rajendra Kumar, R.T. Non-Enzymatic Electrochemical Impedance Sensor for Selective Detection of Electro-Inactive Organophosphate Pesticides Using Zr-MOF/ZrO2/MWCNT Ternary Composite. Environ. Res. 2024, 251, 118648. [Google Scholar] [CrossRef]
- Verma, N.; Pandya, A. Chapter Twelve—Challenges and Opportunities in Micro/Nanofluidic and Lab-on-a-Chip. In Progress in Molecular Biology and Translational Science; Pandya, A., Singh, V., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 186, pp. 289–302. ISBN 1877-1173. [Google Scholar]
- Azizipour, N.; Avazpour, R.; Rosenzweig, D.H.; Sawan, M.; Ajji, A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. Micromachines 2020, 11, 599. [Google Scholar] [CrossRef]
- Gurkan, U.A.; Wood, D.K.; Carranza, D.; Herbertson, L.H.; Diamond, S.L.; Du, E.; Guha, S.; Di Paola, J.; Hines, P.C.; Papautsky, I.; et al. Next Generation Microfluidics: Fulfilling the Promise of Lab-on-a-Chip Technologies. Lab Chip 2024, 24, 1867–1874. [Google Scholar] [CrossRef]
- Jia, H.; Guo, Y.; Sun, X.; Wang, X. An Electrochemical Immunosensor Based on Microfluidic Chip for Detection of Chlorpyrifos. Int. J. Electrochem. Sci. 2015, 10, 8750–8758. [Google Scholar] [CrossRef]
- Islam, S.; Shukla, S.; Bajpai, V.K.; Han, Y.-K.; Huh, Y.S.; Ghosh, A.; Gandhi, S. Microfluidic-Based Graphene Field Effect Transistor for Femtomolar Detection of Chlorpyrifos. Sci. Rep. 2019, 9, 276. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Rowley-Neale, S.J.; Banks, C.E. Screen-Printed Electrodes: Transitioning the Laboratory in-to-the Field. Talanta Open 2021, 3, 100032. [Google Scholar] [CrossRef]
- Costa-Rama, E.; Fernández-Abedul, M.T. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors 2021, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors 2020, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fernández, B.; Mercader, J.V.; Abad-Fuentes, A.; Checa-Orrego, B.I.; Costa-García, A.; de la Escosura-Muñiz, A. Direct Competitive Immunosensor for Imidacloprid Pesticide Detection on Gold Nanoparticle-Modified Electrodes. Talanta 2020, 209, 120465. [Google Scholar] [CrossRef]
- El-Moghazy, A.Y.; Huo, J.; Amaly, N.; Vasylieva, N.; Hammock, B.D.; Sun, G. An Innovative Nanobody-Based Electrochemical Immunosensor Using Decorated Nylon Nanofibers for Point-of-Care Monitoring of Human Exposure to Pyrethroid Insecticides. ACS Appl. Mater. Interfaces 2020, 12, 6159–6168. [Google Scholar] [CrossRef]
- Ye, J.-J.; Lin, C.-H.; Huang, X.-J. Analyzing the Anodic Stripping Square Wave Voltammetry of Heavy Metal Ions via Machine Learning: Information beyond a Single Voltammetric Peak. J. Electroanal. Chem. 2020, 872, 113934. [Google Scholar] [CrossRef]
- Gómez, J.K.C.; Puentes, Y.A.N.; Niño, D.D.C.; Acevedo, C.M.D. Detection of Pesticides in Water through an Electronic Tongue and Data Processing Methods. Water 2023, 15, 624. [Google Scholar] [CrossRef]
- Ozer, T.; Agir, I.; Henry, C.S. Low-Cost Internet of Things (IoT)-Enabled a Wireless Wearable Device for Detecting Potassium Ions at the Point of Care. Sens. Actuators B Chem. 2022, 365, 131961. [Google Scholar] [CrossRef]
- Fratus, M.; Alam, M.A. Universal Scaling Theory of Electrochemical Immunosensors: An Analytical Approach to Define and Compare Performance Metrics. Appl. Phys. Lett. 2023, 122, 054102. [Google Scholar] [CrossRef]
- Martins, B.R.; Barbosa, Y.O.; Andrade, C.M.R.; Pereira, L.Q.; Simão, G.F.; de Oliveira, C.J.; Correia, D.; Oliveira, R.T.S.; da Silva, M.V.; Silva, A.C.A.; et al. Development of an Electrochemical Immunosensor for Specific Detection of Visceral Leishmaniasis Using Gold-Modified Screen-Printed Carbon Electrodes. Biosensors 2020, 10, 81. [Google Scholar] [CrossRef]
- Zumpano, R.; Polli, F.; D’Agostino, C.; Antiochia, R.; Favero, G.; Mazzei, F. Nanostructure-Based Electrochemical Immunosensors as Diagnostic Tools. Electrochem 2021, 2, 10–28. [Google Scholar] [CrossRef]
- Ochoa-Ruiz, A.G.; Parra, G.; López-Espinoza, D.; Astudillo, P.; Galyamin, D.; Sabaté, N.; Esquivel, J.P.; Vallejo-Cardona, A.A. Electrochemical Immunosensors: The Evolution from Elisa to EμPADs. Electroanalysis 2023, 35, e202200053. [Google Scholar] [CrossRef]
- Magarelli, G.; Freire, A.M.; Silva, L.P. Chapter Seven—Electrochemical Sensors Coupled with Machine Learning for Food Safety and Quality Inspection. In Food Quality Analysis; Shukla, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 171–200. ISBN 978-0-323-95988-9. [Google Scholar]
- Chakraborty, K.; Ebihara, A. Pesticide Biosensors for Multiple Target Detection: Improvement Potential with Advanced Data-Processing Methods. Rev. Agric. Sci. 2024, 12, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Phopin, K.; Tantimongcolwat, T. Pesticide Aptasensors—State of the Art and Perspectives. Sensors 2020, 20, 6809. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Dong, H.; Wang, G.; Han, J.; Xu, R.; Kong, Q.; Huang, J.; Xiang, Y.; Yang, Q.; et al. A Novel Label-Free Electrochemiluminescence Aptasensor Using a Tetrahedral DNA Nanostructure as a Scaffold for Ultrasensitive Detection of Organophosphorus Pesticides in a Luminol–H2O2 System. Analyst 2022, 147, 712–721. [Google Scholar] [CrossRef]
- Liu, M.; Khan, A.; Wang, Z.; Liu, Y.; Yang, G.; Deng, Y.; He, N. Aptasensors for Pesticide Detection. Biosens. Bioelectron. 2019, 130, 174–184. [Google Scholar] [CrossRef]
- Hu, S.-Q.; Xie, J.-W.; Xu, Q.-H.; Rong, K.-T.; Shen, G.-L.; Yu, R.-Q. A Label-Free Electrochemical Immunosensor Based on Gold Nanoparticles for Detection of Paraoxon. Talanta 2003, 61, 769–777. [Google Scholar] [CrossRef]
- Sun, X.; Du, S.; Wang, X.; Zhao, W.; Li, Q. A Label-Free Electrochemical Immunosensor for Carbofuran Detection Based on a Sol-Gel Entrapped Antibody. Sensors 2011, 11, 9520–9531. [Google Scholar] [CrossRef]
- Sun, X.; Du, S.; Wang, X. Amperometric Immunosensor for Carbofuran Detection Based on Gold Nanoparticles and PB-MWCNTs-CTS Composite Film. Eur. Food Res. Technol. 2012, 235, 469–477. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, Y.; Sun, X.; Wang, X. Amperometric Immunosensor for Carbofuran Detection Based on MWCNTs/GS-PEI-Au and AuNPs-Antibody Conjugate. Sensors 2013, 13, 5286–5301. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, D.; Hu, Y.; Liu, S.; Wei, H.; Zheng, J.; Wang, G.; Hu, X.; Wang, C. Construction of an Impedimetric Immunosensor for Label-Free Detecting Carbofuran Residual in Agricultural and Environmental Samples. Food Control 2015, 53, 72–80. [Google Scholar] [CrossRef]
- Du, S.; Wang, X.; Sun, X.; Li, Q. Amperometric Immunosensor Based on L-Cysteine/Gold Colloidal Nanoparticles for Carbofuran Detection. Anal. Lett. 2012, 45, 1230–1241. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, Y.; Wang, X. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection. Sensors 2011, 11, 11679–11691. [Google Scholar] [CrossRef]
- Sun, X.; Li, Q.; Wang, X.; Du, S. Amperometric Immunosensor Based on Gold Nanoparticles/Fe3O4-FCNTs-CS Composite Film Functionalized Interface for Carbofuran Detection. Anal. Lett. 2012, 45, 1604–1616. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Barry, R.; Petersen, C.; Timchalk, C.; Gassman, P.L.; Lin, Y. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase: An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents. Chem. Eur. J. 2008, 14, 9951–9959. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zhao, S.; Chen, F.; Lv, Y.; Fu, L. Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. Biosensors 2024, 14, 496. https://doi.org/10.3390/bios14100496
Shen Y, Zhao S, Chen F, Lv Y, Fu L. Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. Biosensors. 2024; 14(10):496. https://doi.org/10.3390/bios14100496
Chicago/Turabian StyleShen, Yin, Shichao Zhao, Fei Chen, Yanfei Lv, and Li Fu. 2024. "Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis" Biosensors 14, no. 10: 496. https://doi.org/10.3390/bios14100496
APA StyleShen, Y., Zhao, S., Chen, F., Lv, Y., & Fu, L. (2024). Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. Biosensors, 14(10), 496. https://doi.org/10.3390/bios14100496