Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen
Abstract
:1. Introduction
2. Oxygen Sensing of Luminous Organic Molecules
2.1. Oxygen Sensing System for Polycyclic Aromatic Hydrocarbons (PAHs)
2.2. Oxygen Sensing Using Room-Temperature Phosphor Organic Molecules
3. Oxygen Sensing of Luminous Metal Complexes
3.1. Oxygen Sensing of Transition Metal Complexes
3.2. Oxygen Sensing of Metalloporphyrin Compounds
4. Oxygen Sensing of Luminescent Semiconductor Materials
Oxygen Sensing of Perovskite-Doped Materials
Sensing Material | Sensing Mechanism | Comments | Reference |
---|---|---|---|
Nanocubes (NCs) of CsPbBr3 perovskite | FL quenching | Highlights the limits of the defect tolerance argument in 1D, 2D and bulk perovskite systems, while confirming the good optical performances exhibited by the better passivated NCs; reveals the pivotal role of the surface structure in the optical properties of inorganic perovskite systems. | [60] |
Nanowires (NWs) of CsPbBr3 perovskite | FL enhancement | ||
Nanosheets (NSs) of CsPbBr3 perovskite | FL enhancement | ||
Bulk single crystals (SCs) of CsPbBr3 perovskite | FL enhancement | ||
MAPbI3 | FL enhancement | Reversible; the oxidation of interstitial iodine is favored over that of lattice iodine, effectively inactivating a source of deep traps with levels located in the MAPbI3 band gap. | [62] |
MAPbX3 NCs | FL quenching | The role of oxygen during the photodegradation process as an oxygen-assisted lightinduced etching, which results in a blue shift in the FL peak position due to NC size reduction and eventually complete FL vanishing. | [63] |
Mn:CsPbCl3 NCs | FL quenching | Sensing range from 0 to 100%; good linear response in the 0−12% O2 concentration range; high sensing reversibility and rapid signal response. | [92] |
Mn2+-doped CsPbCl3 PQDs | FL quenching | An undocumented, oxygen-sensitive, and broad emission band (915−1150 nm) emerges peaking at around 950 nm; the emission band at 950 nm possibly originates from Mn2+-associated defect states. | [93] |
5. FL Properties of Copper-Doped NCs
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.D.; Wolfbeis, O.S. Optical Methods for Sensing and Imaging Oxygen: Materials, Spectroscopies and Applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef]
- Xu, Y.H.; Qi, G.P.; Hu, D.S. Development of Dissolved Oxygen Sensor Based on Time-Domain Lifetime Measurement with a Sensing Film Fabricated by Embedding PtOEP in Highly Stable and Highly Hydrophobic Fluorinated Matrix. Chem. Asian J. 2022, 17, e202200365. [Google Scholar] [CrossRef]
- Bian, Z.; Chao, C.; Feng, S. Dissolved Oxygen Sensing Characteristics of Plastic Optical Fiber Coated with Hydrogel Film. Opt. Fiber Technol. 2021, 66, 102659. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Gao, W. Research Progress of Optical Dissolved Oxygen Sensors: A Review. IEEE Sens. J. 2024, 24, 29564–29574. [Google Scholar] [CrossRef]
- Xiong, X.; Xiao, D.; Choi, M.M.F. Dissolved Oxygen Sensor Based on Fluorescence Quenching of Oxygen-Sensitive Ruthenium Complex Immobilized on Silica–Ni–P Composite Coating. Sens. Actuators B-Chem. 2006, 117, 172–176. [Google Scholar] [CrossRef]
- Kneas, K.A.; Xu, W.; Demas, J.N. Luminescence-Based Oxygen Sensors: ReL(CO)3Cl and ReL(CO)3CN Complexes on Copolymer Supports. J. Fluoresc. 1998, 8, 295–300. [Google Scholar] [CrossRef]
- Mak, C.S.K.; Pentlehner, D.; Stich, M. Exceptional Oxygen Sensing Capabilities and Triplet State Properties of Ir(ppy-NPh2)3. Chem. Mater. 2009, 21, 2173–2175. [Google Scholar] [CrossRef]
- Qi, X.L.; Liu, S.Y.; Lin, R.B. Phosphorescence Doping in a Flexible Ultramicroporous Framework for High and Tunable Oxygen Sensing Efficiency. Chem. Commun. 2013, 49, 6864–6866. [Google Scholar] [CrossRef]
- Xu, W.; Kneas, K.A.; Demas, J.N. Oxygen Sensors Based on Luminescence Quenching of Metal Complexes: Osmium Complexes Suitable for Laser Diode Excitation. Anal. Chem. 1996, 68, 2605–2609. [Google Scholar] [CrossRef]
- Lan, G.; Ni, K.; You, E. Multifunctional Nanoscale Metal–Organic Layers for Ratiometric pH and Oxygen Sensing. J. Am. Chem. Soc. 2019, 141, 18964–18969. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Y.; Duan, X. Nanoscale Metal–Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells. J. Am. Chem. Soc. 2016, 138, 2158–2161. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L. High-Performance Fiber-Optic Oxygen Sensors Based on Fluorinated Xerogels Doped with Pt(II) Complexes. Sens. Actuators B-Chem. 2007, 124, 376–382. [Google Scholar] [CrossRef]
- Huo, C.; Zhang, H.; Zhang, H. Synthesis and Assembly with Mesoporous Silica MCM-48 of Platinum(II) Porphyrin Complexes Bearing Carbazyl Groups: Spectroscopic and Oxygen Sensing Properties. Inorg. Chem. 2006, 45, 4735–4742. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Gao, P.; Sun, G.; Zhang, T.; Li, X.; Liu, S.; Zhao, Q.; Lo, K.K.-W.; Huang, W. Dual-Phosphorescent Iridium(III) Complexes Extending Oxygen Sensing from Hypoxia to Hyperoxia. J. Am. Chem. Soc. 2018, 140, 7827–7834. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Luminescent Sensing and Imaging of Oxygen: Fierce Competition to the Clark Electrode. Bioessays 2015, 37, 921–928. [Google Scholar] [CrossRef]
- Lorenzon, M.; Pinchetti, V.; Bruni, F. Single-Particle Ratiometric Pressure Sensing Based on “Double-Sensor” Colloidal Nanocrystals. Nano Lett. 2017, 17, 1071–1081. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Qin, H. Oxygen Stabilizes Photoluminescence of CdSe/CdS Core/Shell Quantum Dots Via Deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264. [Google Scholar] [CrossRef]
- Basu, B.J.; Anandan, C.; Rajam, K.S. Study of the Mechanism of Degradation of Pyrene-Based Pressure Sensitive Paints. Sens. Actuators B-Chem. 2003, 94, 257–266. [Google Scholar] [CrossRef]
- Basu, B.J.; Thirumurugan, A.; Dinesh, A.R.; Anandan, C.; Rajam, K.S. Optical Oxygen Sensor Coating Based on the Fluorescence Quenching of a New Pyrene Derivative. Sens. Actuators B-Chem. 2005, 104, 15–22. [Google Scholar] [CrossRef]
- Yan, X.; Peng, H.; Xiang, Y.; Wang, J.; Yu, L.; Tao, Y.; Li, H.H.; Huang, W.; Chen, R.F. Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence. Small 2022, 18, 2104073. [Google Scholar] [CrossRef]
- Feng, G.X.; Zhang, G.Q.; Ding, D. Design of Superior Phototheranostic Agents Guided by Jablonski Diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234. [Google Scholar] [CrossRef]
- Keruckiene, R.; Kusas, N.; Dvylys, L.; Skuodis, E.; Matulis, V.E.; Ragoyja, E.G.; Lyakhov, D.A.; Klymenko, I.; Grazulevicius, J.V. Derivatives of Bis(Trifluoromethyl)Biphenyl and Various Donor Noieties Exhibiting Dual State Emission. J. Lumin. 2022, 241, 118502. [Google Scholar] [CrossRef]
- Keruckiene, R.; Volyniuk, D.; Leitonas, K.; Grazulevicius, J.V. Dual Emission Fluorescence/Room-Temperature Phosphorescence of Phenothiazine and Benzotrifluoride Derivatives and Its Application for Optical Sensing of Oxygen. Sens. Actuators B-Chem. 2020, 321, 128533. [Google Scholar] [CrossRef]
- Liao, Q.Y.; Gao, Q.H.; Wang, J.Q.; Gong, Y.B.; Peng, Q.; Tian, Y.; Fan, Y.Y.; Guo, H.J.; Ding, D.; Li, Q.Q.; et al. 9,9-Dimethylxanthene Derivatives with Room-Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angew. Chem. Int. Ed. 2020, 59, 9946–9951. [Google Scholar] [CrossRef]
- Cai, S.Z.; Shi, H.; Tian, D.; Ma, H.L.; Cheng, Z.; Wu, Q.; Gu, M.X.; Huang, L.; An, Z.F.; Peng, Q.; et al. Enhancing Ultralong Organic Phosphorescence by Effective π-Type Halogen Bonding. Adv. Funct. Mater. 2018, 28, 1705045. [Google Scholar] [CrossRef]
- Skhirtladze, L.; Leitonas, K.; Bucinskas, A.; Woon, K.L.; Volyniuk, D.; Keruckiene, R.; Mahmoudi, M.; Lapkowski, M.; Ariffin, A.; Grazulevicius, J. Turn on of Room Temperature Phosphorescence of Donor-Acceptor-Donor Type Compounds via Transformation of Excited States by Rigid Hosts for Oxygen Sensing. Sens. Actuators B-Chem. 2023, 380, 133295. [Google Scholar] [CrossRef]
- Bolton, O.; Lee, K.; Kim, H.J.; Lin, K.Y.; Kim, J. Activating Efficient Phosphorescence from Purely Organic Materials by Crystal Design. Nat. Chem. 2011, 3, 205–210. [Google Scholar] [CrossRef]
- Zhong, W.; Urayama, P.; Mycek, M.A. Imaging Fluorescence Lifetime Modulation of a Ruthenium-Based Dye in Living Cells: The Potential for Oxygen Sensing. J. Phys. D Appl. Phys. 2003, 36, 1689–1695. [Google Scholar] [CrossRef]
- Dobrucki, J.W. Interaction of Oxygen-Sensitive Luminescent Probes Ru(Phen)3 and Ru(Bipy)3 with Animal and Plant Cells in Vitro: Mechanism of Phototoxicity and Conditions for Non-Invasive Oxygen Measurements. J. Photochem. Photobiol. B 2001, 65, 136–144. [Google Scholar] [CrossRef]
- DiMarco, G.; Lanza, M.; Pieruccini, M.; Campagna, S. A Luminescent Iridium(III) Cyclometallated Complex Immobilized in a Polymeric Matrix as a Solid-State Oxygen Sensor. Adv. Mater. 1996, 8, 576–580. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, W.X.; You, F.T.; Geng, Z.X.; Peng, H.S. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sens. 2019, 4, 984–991. [Google Scholar] [CrossRef]
- Luo, J.D.; Xie, Z.L.; Lam, J.W.Y.; Cheng, L.; Chen, H.Y.; Qiu, C.F.; Kwok, H.S.; Zhan, X.W.; Liu, Y.Q.; Zhu, D.B.; et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, L.; Liu, C.; Jin, X. Effects of Fluorine and Phenyl Substituents on Oxygen Sensitivity and Photostability of Cyclometalated Platinum(II) Complexes. Sens. Actuators B-Chem. 2020, 304, 123378. [Google Scholar] [CrossRef]
- Ma, H.L.; Shen, K.; Wu, Y.P.; Xia, F.; Yu, F.L.; Sun, Z.Y.; Qian, C.Y.; Peng, Q.M.; Zhang, H.H.; You, C.; et al. High-Color-Purity and Efficient Solution-Processable Blue Phosphorescent Light-Emitting Diodes with Pt(II) Complexes Featuring 3ππ* Transitions. Mater. Chem. Front. 2019, 3, 2448–2454. [Google Scholar] [CrossRef]
- Liu, C.; Song, X.L.; Rao, X.F.; Xing, Y.; Wang, Z.G.; Zhao, J.Z.; Qiu, J.S. Novel Triphenylamine-Based Cyclometalated Platinum(II) Complexes for Efficient Luminescent Oxygen Sensing. Dye. Pigment. 2014, 101, 85–92. [Google Scholar] [CrossRef]
- Di, L.; Xia, Z.Q.; Wang, H.H.; Xing, Y.; Yang, Z.X. Switchable and Adjustable Aie Activity of Pt(II) Complexes Achieving Swift-Responding and Highly Sensitive Oxygen Sensing. Sens. Actuators B-Chem. 2021, 326, 128987. [Google Scholar] [CrossRef]
- Qi, J.; Li, J.; Liu, R.H.; Li, Q.; Zhang, H.K.; Lam, J.W.Y.; Kwok, R.T.K.; Liu, D.B.; Ding, D.; Tang, B.Z. Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. Chem 2019, 5, 2657–2677. [Google Scholar] [CrossRef]
- Zhao, K.Y.; Mao, H.T.; Wen, L.L.; Shan, G.G.; Fu, Q.; Sun, H.Z.; Su, Z.M. A Simple Strategy to Achieve Remarkable Mechanochromism of Cationic Ir(III) Phosphors through Subtle Ligand Modification. J. Mater. Chem. C 2018, 6, 11686–11693. [Google Scholar] [CrossRef]
- Che, W.L.; Li, G.F.; Liu, X.M.; Shao, K.Z.; Zhu, D.X.; Su, Z.M.; Bryce, M.R. Selective Sensing of 2,4,6-Trinitrophenol (TNP) in Aqueous Media with “Aggregation-Induced Emission Enhancement” (AIEE)-Active Iridium(III) Complexes. Chem. Commun. 2018, 54, 1730–1733. [Google Scholar] [CrossRef]
- Amao, Y.; Okura, I. Optical Oxygen Sensor Devices Using Metalloporphyrins. J. Porphyr. Phthalocyanines 2009, 13, 1111–1122. [Google Scholar] [CrossRef]
- Wang, X.D.; Chen, X.; Xie, Z.X. Reversible Optical Sensor Strip for Oxygen. Angew. Chem. Int. Ed. 2008, 47, 7450–7453. [Google Scholar] [CrossRef]
- Zach, P.W.; Freunberger, S.A.; Klimant, I.; Borisov, S.M. Electron-Deficient near-Infrared Pt(II) and Pd(II) Benzoporphyrins with Dual Phosphorescence and Unusually Efficient Thermally Activated Delayed Fluorescence: First Demonstration of Simultaneous Oxygen and Temperature Sensing with a Single Emitter. ACS Appl. Mater. Interfaces 2017, 9, 38008–38023. [Google Scholar] [CrossRef] [PubMed]
- Penso, C.; Rocha, J.L.; Martins, M. PtOEP–PDMS-Based Optical Oxygen Sensor. Sensors 2021, 21, 5645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z. Ratiometric Sensor Based on PtOEP-C6/Poly (St-TFEMA) Film for Automatic Dissolved Oxygen Content Detection. Sensors 2020, 20, 6175. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.X.; Su, J.; Tang, C.C. CybLuc: An Effective Aminoluciferin Derivative for Deep Bioluminescence Imaging. Anal. Chem. 2017, 89, 4808–4816. [Google Scholar] [CrossRef]
- Xia, T.T.; Cheng, X.T.; Zhan, W.J. Activity-Based Luciferase-Luciferin Bioluminescence System for Bioimaging Applications. Anal. Sens. 2021, 1, 138–147. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Jiang, Q.C.; Liang, G.L. Inspired by Nature: Bioluminescent Systems for Bioimaging Applications. Talanta 2025, 281, 126821. [Google Scholar] [CrossRef]
- Jang, Y.; Shapiro, A.; Isarov, M. Interface Control of Electronic and Optical Properties in IV-VI and II-VI Core/Shell Colloidal Quantum Dots: A Review. Chem. Commun. 2017, 53, 1002–1024. [Google Scholar] [CrossRef]
- Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 2013–2016. [Google Scholar] [CrossRef]
- Chan, W.C.W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef]
- Freeman, R.; Willner, I. Optical Molecular Sensing with Semiconductor Quantum Dots (QDs). Chem. Soc. Rev. 2012, 41, 4067–4085. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhao, T.; Wang, S. Semicondutor Quantum Dots-Based Metal Ion Probes. Nanoscale 2014, 6, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, Y.; Zhang, C. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem. Rev. 2015, 115, 11669–11717. [Google Scholar] [CrossRef] [PubMed]
- Koren, K.; Hutter, L.; Enko, B. Tuning the Dynamic Range and Sensitivity of Optical Oxygen-Sensors by Employing Differently Substituted Polystyrene-Derivatives. Sens. Actuators B-Chem. 2013, 176, 344–350. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q. Functional Metal–Organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef]
- McGee, K.A.; Veltkamp, D.J.; Marquardt, B.J. Porous Crystalline Ruthenium Complexes Are Oxygen Sensors. J. Am. Chem. Soc. 2007, 129, 15092–15093. [Google Scholar] [CrossRef]
- McGee, K.A.; Mann, K.R. Inefficient Crystal Packing in Chiral [Ru(phen)3](PF6)2 Enables Oxygen Molecule Quenching of the Solid-State MLCT Emission. J. Am. Chem. Soc. 2009, 131, 1896–1902. [Google Scholar] [CrossRef]
- Wang, X.; Veerappan, V.; Cheng, C. Free Solution Hydrodynamic Separation of DNA Fragments from 75 to 106,000 Base Pairs in A Single Run. J. Am. Chem. Soc. 2010, 132, 40–41. [Google Scholar] [CrossRef]
- Lorenzon, M.; Sortino, L.; Akkerman, Q. Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr3 Perovskite Nanocrystals. Nano Lett. 2017, 17, 3844–3853. [Google Scholar] [CrossRef]
- Roda, C.; Abdelhady, A.L.; Shamsi, J. O2 as a Molecular Probe for Nonradiative Surface Defects in CsPbBr3 Perovskite Nanostructures and Single Crystals. Nanoscale 2019, 11, 7613–7623. [Google Scholar] [CrossRef]
- Stoeckel, M.A.; Gobbi, M.; Bonacchi, S. Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Adv. Mater. 2017, 29, 1702469–1702475. [Google Scholar] [CrossRef] [PubMed]
- Meggiolaro, D.; Mosconi, E.; De Angelis, F. Mechanism of Reversible Trap Passivation by Molecular Oxygen in Lead-Halide Perovskites. ACS Energy Lett. 2017, 2, 2794–2798. [Google Scholar] [CrossRef]
- Liu, L.; Deng, L.; Huang, S. Photodegradation of Organometal Hybrid Perovskite Nanocrystals: Clarifying the Role of Oxygen by Single-Dot Photoluminescence. J. Phys. Chem. Lett. 2019, 10, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.S.; Zhang, T.L.; Diao, X.L.; Zhu, C.Q. Measurable Emission Color Change: Size-Dependent Reversible Fluorescence Quenching of Cdte Quantum Dots by Molecular Oxygen. Chem. Lett. 2007, 36, 242–243. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Li, D. Self-Trapped Excitons in Two-Dimensional Perovskites. Front. Optoelectron. 2020, 13, 225–234. [Google Scholar] [CrossRef]
- Hu, T.; Smith, M.D.; Dohner, E.R. Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites. J. Phys. Chem. Lett. 2016, 7, 2258–2263. [Google Scholar] [CrossRef]
- Dohner, E.R.; Hoke, E.T.; Karunadasa, H.I. Self-Assembly of Broadband White-Light Emitters. J. Am. Chem. Soc. 2014, 136, 1718–1721. [Google Scholar] [CrossRef]
- Dohner, E.R.; Jaffe, A.; Bradshaw, L.R. Intrinsic White-Light Emission from Layered Hybrid Perovskites. J. Am. Chem. Soc. 2014, 136, 13154–13157. [Google Scholar] [CrossRef]
- Hazarika, A.; Pandey, A.; Sarma, D.D. Rainbow Emission from an Atomic Transition in Doped Quantum Dots. J. Phys. Chem. Lett. 2014, 5, 2208–2213. [Google Scholar] [CrossRef]
- Pu, C.; Ma, J.; Qin, H. Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications. ACS Cent. Sci. 2016, 2, 32–39. [Google Scholar] [CrossRef]
- Liu, G.; Qiu, C.; Tian, B. Influence of the Organic Chain on the Optical Properties of Two-Dimensional Organic-Inorganic Hybrid Lead Iodide Perovskites. ACS Appl. Electron. Mater. 2019, 1, 2253–2259. [Google Scholar] [CrossRef]
- Rossi, D.; Parobek, D.; Dong, Y. Dynamics of Exciton-to-Mn Energy Transfer in Mn-Doped CsPbCl3 Perovskite Nanocrystals. J. Phys. Chem. C 2017, 121, 17143–17149. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Hong, M. Cation-Doping Matters in Caesium Lead Halide Perovskite Nanocrystals: From Physicochemical Fundamentals to Optoelectronic Applications. Nanoscale 2020, 12, 12228–12248. [Google Scholar] [CrossRef]
- Yuan, X.; Ji, S.; De Siena, M.C. Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn2+-Doped CsPbCl3 Perovskite Nanocrystals with Varied Dopant Concentration. Chem. Mater. 2017, 29, 8003–8011. [Google Scholar] [CrossRef]
- Wei, Q.; Li, M.; Zhang, Z. Efficient Recycling of Trapped Energies for Dual-Emission in Mn-Doped Perovskite Nanocrystals. Nano Energy 2018, 51, 704–710. [Google Scholar] [CrossRef]
- Parobek, D.; Roman, B.J.; Dong, Y. Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. Nano Lett. 2016, 16, 7376–7380. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Z.; Shao, J.; Yao, D.; Gao, H.; Liu, Y.; Yu, W.; Zhang, H.; Yang, B. CsPbxMn1−xCl3 Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano 2017, 11, 2239–2247. [Google Scholar] [CrossRef]
- Labiadh, H.; Sellami, B.; Khazri, A. Optical Properties and Toxicity of Undoped and Mn-Doped ZnS Semiconductor Nanoparticles Synthesized Through the Aqueous Route. Opt. Mater. 2017, 64, 179–186. [Google Scholar] [CrossRef]
- Wu, P.; Yan, X.P. Doped Quantum Dots for Chemo/Biosensing and Bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, J.; Xie, Y.N. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Oil Samples Cased on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots. Anal. Chem. 2018, 90, 2939–2945. [Google Scholar] [CrossRef]
- Diaz-Diestra, D.; Thapa, B.; Beltran-Huarac, J. L-Cysteine Capped ZnS:Mn Quantum Dots for Room-Temperature Detection of Dopamine with High Sensitivity and Selectivity. Biosens. Bioelectron. 2017, 87, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Fan, Z. Melamine-Modulated Mercaptopropionic Acid-Capped Manganese Doped Zinc Sulfide Quantum Dots as a Room-Temperature Phosphorescence Sensor for Detecting Clenbuterol in Biological Fluids. Sens. Actuators B-Chem. 2014, 202, 638–644. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, J.; Zhou, R. Phosphorescent Inner Filter Effect-Based Sensing of Xanthine Oxidase and its Inhibitors with Mn-Doped ZnS Quantum Dots. Nanoscale 2018, 10, 8477–8482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yu, T.; Liu, F. Selective Fluorescence Turn-On and Ratiometric Detection of Organophosphate Using Dual-Emitting Mn-Doped ZnS Nanocrystal Probe. Anal. Chem. 2014, 86, 11727–11733. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, K.; Zhao, T. Selective Phosphorescence Sensing of Pesticide Based on the Inhibition of Silver(I) Quenched ZnS:Mn2+ Quantum Dots. Sens. Actuators B-Chem. 2017, 252, 1083–1088. [Google Scholar] [CrossRef]
- He, H.; Li, C.; Tian, Y. Phosphorescent Differential Sensing of Physiological Phosphates with Lanthanide Ions-Modified Mn-Doped ZnCdS Quantum Dots. Anal. Chem. 2016, 88, 5892–5897. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, D.; Yao, Y. Aggregation-Induced Phosphorescence Enhancement of Mn-Doped ZnS Quantum Dots: The Role of Dot-to-Dot Distance. Nanoscale 2018, 10, 9236–9244. [Google Scholar] [CrossRef]
- Liu, W.; Lin, Q.; Li, H.; Wu, K.; Robel, I.; Pietryga, J.M.; Klimov, V.I. Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. J. Am. Chem. Soc. 2016, 138, 14954–14961. [Google Scholar] [CrossRef]
- De, A.; Mondal, N.; Samanta, A. Luminescence Tuning and Exciton Dynamics of Mn-Doped CsPbCl3 Nanocrystals. Nanoscale 2017, 9, 16722–16727. [Google Scholar] [CrossRef]
- Li, Z.-J.; Hofman, E.; Davis, A.H.; Khammang, A.; Wright, J.T.; Dzikovski, B.; Meulenberg, R.W.; Zheng, W. Complete Dopant Substitution by Spinodal Decomposition in Mn-Doped Two-Dimensional CsPbCl3 Nanoplatelets. Chem. Mater. 2018, 30, 6400–6409. [Google Scholar] [CrossRef]
- Pradhan, N. Red-Tuned Mn d-d Emission in Doped Semiconductor Nanocrystals. ChemPhysChem 2016, 17, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Li, F.; Lai, Z. MnII-Doped Cesium Lead Chloride Perovskite Nanocrystals: Demonstration of Oxygen Sensing Capability Based on Luminescent Dopants and Host-Dopant Energy Transfer. ACS Appl. Mater. Interfaces 2018, 10, 23335–23343. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, X.; Zhao, T. Ultraefficient Singlet Oxygen Generation from Manganese-Doped Cesium Lead Chloride Perovskite Quantum Dots. ACS Nano 2020, 14, 12596–12604. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.Y.; Lai, Z.W.; Zhang, L.C.; Huang, Y.P.; Li, F.M.; Chen, P.Y.; Wang, Y.R.; Chen, X. Fluorometric Sensing of Oxygen Using Manganese(II)-Doped Zinc Sulfide Nanocrystals. Microchim. Acta 2020, 187, 66–74. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M. Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications. Chem. Mater. 2018, 30, 6589–6613. [Google Scholar] [CrossRef]
- Jiang, T.; Ma, W.; Zhang, H. Highly Efficient and Tunable Emission of Lead-Free Manganese Halides Toward White Light-Emitting Diode and X-Ray Scintillation Applications. Adv. Funct. Mater. 2021, 31, 2009973–2009981. [Google Scholar] [CrossRef]
- Xu, K.; Meijerink, A. Tuning Exciton-Mn2+ Energy Transfer in Mixed Halide Perovskite Nanocrystals. Chem. Mater. 2018, 30, 5346–5352. [Google Scholar] [CrossRef]
- Bakthavatsalam, R.; Biswas, A.; Chakali, M. Temperature-Dependent Photoluminescence and Energy-Transfer Dynamics in Mn2+-Doped (C4H9NH3)2PbBr4 Two-Dimensional 2D Layered Perovskite. J. Phys. Chem. C 2019, 123, 4739–4748. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Zhao, C. Excitation-Dependent Emission Color Tuning from an Individual Mn-Doped Perovskite Microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096. [Google Scholar] [CrossRef]
- Pinchetti, V.; Anand, A.; Akkerman, Q.A. Trap-Mediated Two-Step Sensitization of Manganese Dopants in Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 85–93. [Google Scholar] [CrossRef]
- Ricciarelli, D.; Meggiolaro, D.; Belanzoni, P. Energy vs Charge Transfer in Manganese-Doped Lead Halide Perovskites. ACS Energy Lett. 2021, 6, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Brovelli, S.; Galland, C.; Viswanatha, R. Tuning Radiative Recombination in Cu-Doped Nanocrystals Via Electrochemical Control of Surface Trapping. Nano Lett. 2012, 12, 4372–4379. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, B.B.; Jana, S.; Pradhan, N. Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights. J. Am. Chem. Soc. 2011, 133, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Sarma, D.D. Advances in Light-Emitting Doped Semiconductor Nanocrystals. J. Phys. Chem. Lett. 2011, 2, 2818–2826. [Google Scholar] [CrossRef]
- Pradhan, N.; Goorskey, D.; Thessing, J. An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587. [Google Scholar] [CrossRef]
- Xie, R.; Peng, X. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc. 2009, 131, 10645–10651. [Google Scholar] [CrossRef]
- Sarkar, S.; Karan, N.S.; Pradhan, N. Ultrasmall Color-Tunable Copper-Doped Ternary Semiconductor Nanocrystal Emitters. Angew. Chem. Int. Ed. 2011, 50, 6065–6069. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, X.; Zhong, X. One-Pot Noninjection Synthesis of Cu-Doped ZnxCd1−xS Nanocrystals with Emission Color Tunable Over Entire Visible Spectrum. Inorg. Chem. 2012, 51, 3579–3587. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, Y.; Wang, Y. Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Adv. Mater. 2017, 29, 1700150. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.; Zhu, T. All-Inorganic CsPbBr3 Perovskite Quantum Dots as a Photoluminescent Probe for Ultrasensitive Cu2+ Detection. J. Mater. Chem. C 2018, 6, 4793–4799. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, S.; Li, B. A Series of [Cu(N–N)(P–P)]BF4 Complexes: Luminescence Quenching Caused by Electron-Configuration Transformation in Excited State. Inorg. Chim. Acta 2012, 384, 225–232. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Yue, S. Synthesis, Photophysical and Oxygen-Sensing Properties of a Novel Bluish-Green Emission Cu(I) Complex. Sens. Actuators B-Chem. 2009, 137, 386–392. [Google Scholar] [CrossRef]
- Zhang, L.C.; Lin, F.Y.; Ye, M.; Tian, D.J.; Jin, J.W.; Huang, Y.P.; Jiang, Y.Q.; Wang, Y.R.; Chen, X. Luminescence Sensing of Oxygen Using Copper Iodide Hybrid Material. Sens. Actuators B-Chem. 2021, 346, 130566. [Google Scholar] [CrossRef]
- Lan, T.; Wang, W. Electrospinning Fibrous Films Doped with a Series of Luminescent Copper Complexes: Synthesis, Characterization and Oxygen Sensing Performance Comparison. Sens. Actuators B-Chem. 2018, 254, 81–92. [Google Scholar] [CrossRef]
- Huitorel, B.; El Moll, H.; Utrera-Melero, R. Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters. Inorg. Chem. 2018, 57, 4328–4339. [Google Scholar] [CrossRef]
- Xie, M.; Han, C.; Liang, Q.; Zhang, J.; Xie, G.; Xu, H. Highly Efficient Sky Blue Electroluminescence from Ligand-Activated Copper Iodide Clusters: Overcoming the Limitations of Cluster Light-Emitting Diodes. Sci. Adv. 2019, 5, eaav9857. [Google Scholar] [CrossRef]
- Yang, L.O.; Zhang, L.C.; Tian, D.J.; Ye, M.; Xi, C. Oxygen Sensing Behavior Modulation of Tetranuclear Copper Iodide Hybrid Materials Using Ligand Engineering. Sens. Actuators B-Chem. 2023, 393, 134310. [Google Scholar] [CrossRef]
- Yang, L.O.; Tian, D.J.; Liu, X.L.; Lin, F.Y.; Xi, C. Oxygen Sensing Performance Modulation Using Luminescent Ionic Copper Iodide Clusters Based on Mn(II) Crystal Field Intensity. Sens. Actuators B-Chem. 2024, 418, 136252. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Geng, X.; Shi, X.X.; Guo, Y.; Sun, Y.; Qu, L.; Li, Z. A Fluorescence-Switchable Carbon Dot for the Reversible Turn-On Sensing of Molecular Oxygen. J. Mater. Chem. C 2021, 9, 4300–4306. [Google Scholar] [CrossRef]
- He, Z.; Wang, Y.N.; An, J.H. Splitting and Aggregation of Carbon Dots: Wavelength-Shifted and Ratiometric Fluorescence Sensing of Peroxynitrite. Anal. Chem. 2024, 96, 19047–19055. [Google Scholar] [CrossRef]
Sensing Material | Sensing Mechanism | Sensing Range | Sensitivity I0/I100 | Response Time | Reference |
---|---|---|---|---|---|
[Cu(POP)(PTZ)]BF4 | FL quenching | 0–100% | 11.16 | 5 s | [112] |
Cu4I4(PPh3)4/PS film | FL quenching | 0–100% (gas) | 5.4 | 8 s | [113] |
0.9–34.06 mg/L (dissolved oxygen) | 4.8 | 145 s | |||
[Cu(L)(PPh3)2]BF4/PS fibrous films | FL quenching | 0–100% | 15.81 | 6 s | [114] |
CuI-CF3 | FL quenching | 0–100% | 12.14 | - | [117] |
[Mn(dppmO2)3]Cu2I4·3MeCN | FL quenching | 0–90% | 6.6 | 9 s | [118] |
[Mn(dppeO2)3]Cu2I4 | FL quenching | 0–90% | 2.1 | 13 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Huang, Y.; Zhang, C.; Zhang, L.; Jiang, S.; Chen, X. Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen. Biosensors 2025, 15, 132. https://doi.org/10.3390/bios15030132
Jin J, Huang Y, Zhang C, Zhang L, Jiang S, Chen X. Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen. Biosensors. 2025; 15(3):132. https://doi.org/10.3390/bios15030132
Chicago/Turabian StyleJin, Jingwen, Yaning Huang, Chen Zhang, Li Zhang, Shaoxing Jiang, and Xi Chen. 2025. "Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen" Biosensors 15, no. 3: 132. https://doi.org/10.3390/bios15030132
APA StyleJin, J., Huang, Y., Zhang, C., Zhang, L., Jiang, S., & Chen, X. (2025). Novel Lead Halide Perovskite and Copper Iodide Materials for Fluorescence Sensing of Oxygen. Biosensors, 15(3), 132. https://doi.org/10.3390/bios15030132