Many-Particle Dynamics in Collisions of Electrons, Positrons and Photons, 2nd Edition

A special issue of Atoms (ISSN 2218-2004). This special issue belongs to the section "Atomic, Molecular and Nuclear Spectroscopy and Collisions".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 907

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
Interests: atomic, molecular and optical physics; electron and positron collision physics; fundamental processes in low temperature plasmas; ion trapping and its dynamics in an electrostatic trap
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Physics, Kansas State University, Manhattan, KS 66502, USA
Interests: atomic and molecular physics; physics of atoms/molecules/ions of astrophysical, plasma, and fundamental interest; theoretical investigations of quantum collisions involving electron, positron, and photon scattering from atoms, molecules, and their ions
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
Interests: electron and photon-induced processes for molecules and their ions; ultrafast processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The field of atomic, molecular, and nuclear spectroscopy and collision are interrelated to each other and provide comprehensive insights into the fundamental properties of matter, as well as helping to understand the processes occurring in cosmological environments.

The primary processes in the universe are a result of secondary radiation and charged particles created due to the interactions of cosmic rays and solar radiation, when they pass through the molecular mediums. These processes bear the signatures of molecular species and hence the molecular environments.

Through various spectroscopic techniques and the study of particle collisions, scientists can decode complex structures, interactions, and processes at the atomic and molecular levels.

Therefore, understanding molecular processes is of primary interest to several fields of applied sciences including aeronomy, planetary science, interstellar molecular clouds, radiation chemistry, physics, biology, dosimetry, radiation therapy, health physics, electron and X-ray microscopy, photoelectron spectroscopy, etc., and drives advancements in multiple scientific and technological domains.

In the current scenario, it is also widely recognized that due to the advancement of lasers, the field of plasma science and technology is growing rapidly. This development is based on the manipulation of plasma properties which in turn requires a detailed understanding of the atomic and molecular processes within plasmas. The collisions of electrons with atoms, molecules, ions, and surfaces are of fundamental importance in low-temperature plasmas, with numerous applications in plasma science and technologies.

Moreover, electron-induced collisions with biomolecules have geared up essentially due to their importance in radiobiology for understanding the radio-induced damages to live tissues. Understanding the underlying physics of such irradiations requires the full description of collisional processes induced by the radiative beam on the target under consideration. In addition to this, the advancement of laser technology and the development of coherent light sources make it possible to probe the molecules with a high level of sophistication. To analyze these experimental data, we need theoretical advancement as well.

In this Special Issue, we invite original contributions covering all aspects of electron, positron and photon interaction with atoms, molecules, ions and surfaces both from experimental and theoretical points of view. Such data are of high demand in plasma science, radiation physics and astrophysics and astronomy. Accurate calculations of some metastable ions are also welcome.

Dr. Dhanoj Gupta
Dr. Paresh Modak
Dr. Suvam Singh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atoms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electron collision
  • positron collision
  • photon collision
  • ionization
  • excitation
  • elastic scattering
  • photoionization
  • positronium formation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 1096 KiB  
Article
Elastic e-Atom Scattering Using Multi-Configuration Dirac–Fock Partial Wave Analysis
by R. Aiswarya and Jobin Jose
Atoms 2025, 13(5), 39; https://doi.org/10.3390/atoms13050039 (registering DOI) - 30 Apr 2025
Abstract
A novel scattering formalism, the multi-configuration Dirac–Fock partial wave analysis (MCDF-PWA), is presented in this study. This approach extends the conventional Dirac partial wave analysis by incorporating multiple atomic configurations of the target scatterer. The newly formulated methodology is employed to compute the [...] Read more.
A novel scattering formalism, the multi-configuration Dirac–Fock partial wave analysis (MCDF-PWA), is presented in this study. This approach extends the conventional Dirac partial wave analysis by incorporating multiple atomic configurations of the target scatterer. The newly formulated methodology is employed to compute the cross-sections in elastic e-atom scattering. The analysis is performed for a few atomic targets like Mg, Ca, and Ba. Full article
Show Figures

Figure 1

15 pages, 570 KiB  
Article
Electron and Positron Collision with Plasma Wall Coating Elements
by Balajee R, Yurekha S.P., Snigdha Sharma and Dhanoj Gupta
Atoms 2025, 13(5), 37; https://doi.org/10.3390/atoms13050037 - 26 Apr 2025
Viewed by 87
Abstract
The investigation of integral elastic cross-section (ICS), momentum transfer cross-section (MTCS), viscosity cross-section (VCS), absorption cross-section (ABSCS), and total cross-section (TCS) of atoms by electron (e) and positron (e+) impact is very crucial and essential for understanding [...] Read more.
The investigation of integral elastic cross-section (ICS), momentum transfer cross-section (MTCS), viscosity cross-section (VCS), absorption cross-section (ABSCS), and total cross-section (TCS) of atoms by electron (e) and positron (e+) impact is very crucial and essential for understanding fundamental atomic processes and their applications in various fields such as plasma physics, molecular physics, and astrophysics. This study investigates and analyses the ICS, MTCS, VCS, ABSCS, and TCS of the atoms, Li, Be, B, Ti, and W, over a wide energy range. By employing the computational Optical Potential Method (OPM) and quantum scattering integrated in a computational package, ELSEPA (Elastic scattering of electrons and positrons by atoms, positive ions and molecules), the cross-sections of atoms by electron and positron impact are calculated. The present results shows good agreement with all the experimental and theoretical data available in the literature. The obtained cross-sections may facilitate the development of accurate models for plasma simulations and fusion research. Full article
Show Figures

Figure 1

18 pages, 5982 KiB  
Article
Relativistic Atomic Structure Calculations for the Study of Electron Dynamics of Sr+ Ion Confined Inside Fullerene
by Biplab Goswami, Mobassir Ahmad, Jobin Jose and Raghavan K. Easwaran
Atoms 2025, 13(4), 36; https://doi.org/10.3390/atoms13040036 - 18 Apr 2025
Viewed by 147
Abstract
This article presents the maiden investigation of the electronic structural properties of the Sr+ ion confined inside fullerene. The Dirac equations are solved to calculate the energy levels, probability distributions, etc. for various confinement depths of the Gaussian Annular Square Well (GASW) [...] Read more.
This article presents the maiden investigation of the electronic structural properties of the Sr+ ion confined inside fullerene. The Dirac equations are solved to calculate the energy levels, probability distributions, etc. for various confinement depths of the Gaussian Annular Square Well (GASW) potential using the Multi-Configuration Dirac Hartree–Fock (MCDHF) formalism. The wavelengths, transition probabilities, and oscillator strengths are reported for the 5S1/25P1/2 (D1 line) and 5S1/25P3/2 (D2 line) transitions of the encapsulated ion. We also estimate variations in the line intensity ratio, electron density, Coulomb coupling parameter, etc. A suggested direction for the calculation of electron impact ionization cross-section using the binary-encounter Bethe (BEB) model with the present data is also given. Full article
Show Figures

Figure 1

13 pages, 375 KiB  
Article
Electron Scattering from Sevoflurane
by Savinder Kaur, Ajay Kumar Arora, Kasturi Lal Baluja and Anand Bharadvaja
Atoms 2025, 13(4), 29; https://doi.org/10.3390/atoms13040029 - 1 Apr 2025
Viewed by 259
Abstract
Various electron impact scattering cross sections of Sevoflurane are reported up to 5 keV. The elastic cross sections (differential and integral) are computed using the single-centre-expansion formalism within a molecular framework. The ground state target wavefunction is determined at the Hartree–Fock (HF) level. [...] Read more.
Various electron impact scattering cross sections of Sevoflurane are reported up to 5 keV. The elastic cross sections (differential and integral) are computed using the single-centre-expansion formalism within a molecular framework. The ground state target wavefunction is determined at the Hartree–Fock (HF) level. Post-HF corrections are incorporated to make a scattering realistic model. The total interacting potential is defined as the sum of static, correlation–polarization and exchange potentials. These potentials are numerically computed using their local forms. The long-range effects affecting the scattering due to the polar nature of the molecule are incorporated using the Born Top-up approach. The ionization cross sections are obtained from the semi-empirical binary-encounter-Bethe model. The total cross sections are estimated from the incoherent sum of Born-corrected elastic integral and ionization cross sections. The computed results show fairly good agreement with the experimental reported cross sections. Full article
Show Figures

Figure 1

Back to TopTop