X-Ray Spectroscopy in Astrophysics

A special issue of Atoms (ISSN 2218-2004).

Deadline for manuscript submissions: 15 July 2025 | Viewed by 562

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: highly charged ions; X-ray spectroscopy; momentum-imaging

Special Issue Information

Dear Colleagues,

X-ray spectroscopy plays a decisive role in characterizing quantum transitions in atomic physics with highly charged ions. Its prosperous developments can be traced back to 1980s when highly charged ion sources like the electron cyclotron ion source and the electron beam ion source were invented. To date, various experimental and theoretical methods have become well established to assist in understanding the transitions and collision dynamics of highly charged ions under extremely strong electric fields. On the other hand, with the development of X-ray observation techniques in astrophysics in recent decades, the X-ray emission of highly charged ions has come to be a widely observed diagnostic entity in various hot plasma in astrophysical contexts. To better understand the origin of these particles and the relevant physical processes, a large amount of basic atomic data is required for accurately modeling. This Special Issue is focused mainly on laboratory-based astrophysics and seeks to introduce the development of experimental measurements and theoretical developments in fundamental atomic collision processes with highly charged ions. These include high-resolution X-ray measurements with electron beam ion traps and highly charged ion accelerators, recent progress in the direct measurement of charge exchange state selectivity, as well as electron impact excitation and dielectron recombination processes. The Special Issue aims to present some examples showing the importance of atomic physical data in astrophysical X-ray modeling . This Special Issue will be helpful for astrophysical X-ray studies with next generation of high-resolution X-ray missions.

Dr. Ruitian Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atoms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • atomic physics with highly charged ions
  • X-ray astrophysics
  • modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 4390 KiB  
Article
The Laboratory Measurement of the Line Ratios in X-Ray Emission Resulting from the Charge Exchange Between Mg11+ and Helium
by Kebao Shu, Caojie Shao, Shuo Zhang, Ruitian Zhang, Cheng Qian, Yingli Xue, Mingwu Zhang, Jinlei Tian, Zhenqiang Wang, Xiaolong Zhu, Liangting Sun, Junxia Ran and Deyang Yu
Atoms 2025, 13(4), 34; https://doi.org/10.3390/atoms13040034 - 14 Apr 2025
Viewed by 208
Abstract
The line ratios in X-ray emission resulting from charge exchange between highly charged ions (HCIs) and neutral atoms are not only crucial for accurately modeling astrophysical X-ray emissions but also offer a unique perspective on the charge exchange processes happening during collisions. The [...] Read more.
The line ratios in X-ray emission resulting from charge exchange between highly charged ions (HCIs) and neutral atoms are not only crucial for accurately modeling astrophysical X-ray emissions but also offer a unique perspective on the charge exchange processes happening during collisions. The K X-ray spectra following charge exchange between Mg11+ and He are presented for a collision velocity of 1489 km/s (11.5 keV/amu). The spectra were measured by two Silicon Drift Detectors capable of resolving the Mg10+ Kα, Kβ, Kγ, and Kδ+ lines. The line intensity ratios of Kβ, Kγ, and Kδ+ relative to the Kα line, as well as the hardness ratio, were obtained. The experimental results were compared with the theoretical results from a cascade model that utilizes the state cross-sections produced by multichannel Landau–Zener (MCLZ) calculation. It was discovered that the K X-ray spectrum features can be reproduced well by MCLZ theory when the contributions of both single electron capture (SEC) and autoionizing double capture (ADC) processes are included. This finding implies that the ADC feeding mechanism is significant and should be taken into account for the X-ray emission during charge exchange between highly charged ions and multielectron atoms. Full article
(This article belongs to the Special Issue X-Ray Spectroscopy in Astrophysics)
Show Figures

Figure 1

Back to TopTop