Observations of Venus Atmosphere

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Planetary Atmospheres".

Deadline for manuscript submissions: closed (25 January 2021) | Viewed by 9662

Special Issue Editor


E-Mail Website
Guest Editor
INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, 00133 Rome, Italy
Interests: planetary atmospheres; Venus; Jupiter; spectroscopy; atmospheric dynamics; atmospheric composition

Special Issue Information

Dear Colleagues,

We invite researchers to contribute original research articles, as well as review articles, dealing with all aspects of ‘Observations of Venus’s Atmosphere’. These contributions include recent experimental and modeling works to address peculiar atmospheric phenomena observed in Venus’s atmosphere, such as the planet’s super-rotation, lightning and surface emissivity. We are also interested in reviews with possible future lines of investigations. The Special Issue on ’Observations of Venus’s Atmosphere’ aims to address the recent advances in the study of Venus, through ground based observations, space measurements and modeling, as well as with an eye on the future exploration of this planet. Topics of interest include, but are not limited to:

  • Atmospheric dynamics, including super-rotation, wind measurements, polar vortex and minor species;
  • Global circulation modelling of atmospheric phenomena;
  • New data from Akatsuki and ground-based facilities;
  • Instrumentation for future exploration;
  • Modelling of Venus as a paradigm of terrestrial exoplanets.

Dr. Alessandra Migliorini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Venus
  • atmospheric dynamics
  • imaging and spectroscopy
  • observing techniques

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 4620 KiB  
Article
Venus Atmospheric Dynamics at Two Altitudes: Akatsuki and Venus Express Cloud Tracking, Ground-Based Doppler Observations and Comparison with Modelling
by Pedro Machado, Thomas Widemann, Javier Peralta, Gabriella Gilli, Daniela Espadinha, José E. Silva, Francisco Brasil, José Ribeiro and Ruben Gonçalves
Atmosphere 2021, 12(4), 506; https://doi.org/10.3390/atmos12040506 - 17 Apr 2021
Cited by 12 | Viewed by 3093
Abstract
We present new results of our studies of zonal and meridional winds in both hemispheres of Venus, using ground- and space-based coordinated observations. The results obtained from telescope observations were retrieved with a Doppler velocimetry method. The wind velocities retrieved from space used [...] Read more.
We present new results of our studies of zonal and meridional winds in both hemispheres of Venus, using ground- and space-based coordinated observations. The results obtained from telescope observations were retrieved with a Doppler velocimetry method. The wind velocities retrieved from space used an improved cloud-tracked technique based on the phase correlation between images. We present evidence that the altitude level sensed by our Doppler velocimetry method is approximately four kilometres higher (~4 km) than that using ground-tracked winds (using 380 or 365 nm). Since we often take advantage of coordinated space and ground observations simultaneously, this altitude difference will be very relevant in order to estimate the vertical wind shear at the related heights in future observation campaigns. We also explored a previous coordinated campaign using Akatsuki observations and its Ultraviolet Imager (UVI) at 283 and 365 nm filters, which showed that cloud-tracked winds showed a difference of about 10–15 ms−1, as in the case of the comparison between the Doppler velocimetry winds and the 365 nm cloudtracked winds. The results’ comparison also strongly suggested that the cloud-tracked winds based on the 283 nm filter’s images were sensing at about the same atmospheric altitude level as the Doppler winds. The observational results were compared with the ground-to-thermosphere 3D model developed at the Laboratoire de Meteorologie Dynamique (IPSL-Venus General Circulation Model (VGCM)) and AFES-Venus General Circulation Model (GCM), at several pressure levels (and related heights). The analysis and results showed the following: (1) additional confirmation of the coherence and complementarity in the results provided by these techniques on both the spatial and temporal time scales of the two methods; (2) we noticed in the following that the results from the two different Akatsuki/UVI filters (283 and 365 nm) showed an average difference of about 10–15 ± 5 ms−1, and we suggest this may be related to SO2 atmospheric fluctuations and the particular conditions in the coordinated observing time window; (3) we present evidence indicating that, in the context of our observations, visible Doppler methods (highly self-consistent) seem to sense wind speeds at a vertical level closer to or within the range sensed by the UVI 283 nm filter images (again, in the context of our observations); (4) modelling predicted wind profiles suggests that the layers of the atmosphere of Venus sensed by the methods referred to in Point 3 differ by approximately four km in altitude (~4 ± 2 km) regarding the cloud-tracked winds retrieved using 365 or 380 nm images. Full article
(This article belongs to the Special Issue Observations of Venus Atmosphere)
Show Figures

Figure 1

13 pages, 5768 KiB  
Article
Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 μm Images
by Dmitry A. Gorinov, Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin
Atmosphere 2021, 12(2), 186; https://doi.org/10.3390/atmos12020186 - 30 Jan 2021
Cited by 9 | Viewed by 1728
Abstract
The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a [...] Read more.
The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60° S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20° S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20° S. Significant correlation with surface topography was not found, except for a slight decrease of zonal wind speed, which was connected to the volcanic area of Imdr Regio. Full article
(This article belongs to the Special Issue Observations of Venus Atmosphere)
Show Figures

Figure 1

16 pages, 6407 KiB  
Article
Observing System Simulation Experiment to Reproduce Kelvin Wave in the Venus Atmosphere
by Norihiko Sugimoto, Yukiko Fujisawa, Mimo Shirasaka, Asako Hosono, Mirai Abe, Hiroki Ando, Masahiro Takagi and Masaru Yamamoto
Atmosphere 2021, 12(1), 14; https://doi.org/10.3390/atmos12010014 - 24 Dec 2020
Cited by 4 | Viewed by 2010
Abstract
Planetary-scale 4-day Kelvin-type waves at the cloud top of the Venus atmosphere have been reported from the 1980s, and their significance for atmospheric dynamics has been pointed out. However, these waves have not been reproduced in Venus atmospheric general circulation models (VGCMs). Recently, [...] Read more.
Planetary-scale 4-day Kelvin-type waves at the cloud top of the Venus atmosphere have been reported from the 1980s, and their significance for atmospheric dynamics has been pointed out. However, these waves have not been reproduced in Venus atmospheric general circulation models (VGCMs). Recently, horizontal winds associated with the planetary-scale waves at the cloud top have been obtained from cloud images taken by cameras onboard Venus orbiters, which could enable us to clarify the structure and roles of Kelvin-type waves. In order to examine this possibility, our team carried out an idealized observing system simulation experiment (OSSE) with a data assimilation system which we developed. The wind velocity data provided by a CCSR/NIES (Center for Climate System Research/National Institute for Environmental Studies) VGCM where equatorial Kelvin-type waves were assumed below the cloud bottom was used as idealized observations. Results show that 4-day planetary-scale Kelvin-type waves are successfully reproduced if the wind velocity between 15° S and 15° N latitudes is assimilated every 6 h at 70 km altitude. It is strongly suggested that the Kelvin-type waves could be reproduced and investigated by the data assimilation with the horizontal wind data derived from Akatsuki ultraviolet images. The present results also contribute to planning future missions for understanding planetary atmospheres. Full article
(This article belongs to the Special Issue Observations of Venus Atmosphere)
Show Figures

Graphical abstract

14 pages, 1482 KiB  
Article
A Wind Study of Venus’s Cloud Top: New Doppler Velocimetry Observations
by Ruben Gonçalves, Pedro Machado, Thomas Widemann, Francisco Brasil and José Ribeiro
Atmosphere 2021, 12(1), 2; https://doi.org/10.3390/atmos12010002 - 22 Dec 2020
Cited by 3 | Viewed by 2081
Abstract
At Venus’s cloud top, the circulation is dominated by the superroration, where zonal wind speed peaks at ∼100 ms1, in the low-to-middle latitudes. The constraining of zonal and meridional circulations is essential to understanding the mechanisms driving the superrotation of [...] Read more.
At Venus’s cloud top, the circulation is dominated by the superroration, where zonal wind speed peaks at ∼100 ms1, in the low-to-middle latitudes. The constraining of zonal and meridional circulations is essential to understanding the mechanisms driving the superrotation of Venus’s atmosphere, which are still poorly understood. We present new Doppler velocimetry measurements of horizontal wind velocities at Venus’s cloud top, around 70 km altitude. These results were based on March 2015 observations at the Canada–France–Hawaii Telescope (CFHT, Mauna Kea, Hawaii), using ESPaDOnS. The Doppler velocimetry method used has already successfully provided zonal and meridional results in previous works led by P. Machado and R. Gonçalves, proving to be a good reference ground-based technique in the study of the dynamics of Venus’s atmosphere. These observations were carried out between 27 and 29 March 2015, using the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) which provides simultaneous visible-near IR spectra from 370 to 1050 nm, with a spectral resolution of 81000 allowing wind field characterization in the scattered Franuhofer solar lines by Venus’s cloud top on the dayside. The zonal velocities are consistent with previous results while also showing evidence of spatial variability, along planetocentric latitude and longitude (local-time). The meridional wind circulation presents a notably constant latitudinal structure with null velocities at lower latitudes, below 10 N–S, and peak velocities of ∼30 ms1, centered around 35 N–S. The uncertainty of the meridional wind results from ground observations is of the same order as the uncertainty of meridional wind retrieved by space-based observations using cloud-tracking, as also shown by previous work led by R. Gonçalves and published in 2020. These March 2015 measurements present a unique and valuable contribution to the study of horizontal wind at the cloud top, from a period when Doppler velocimetry was the only available method to do so, since no space mission was orbiting Venus between Venus Express ending in January 2015 and Akatsuki’s orbit insertion in December 2015. These results from new observations provide (1) constraints on zonal wind temporal and spatial variability (latitude and local time), (2) constraints on the meridional wind latitudinal profile, (3) additional evidence of zonal and meridional wind stability for the period between 2011 and 2015 (along previous Doppler results) (4) further evidence of the consistency and robustness of our Doppler velocimetry method. Full article
(This article belongs to the Special Issue Observations of Venus Atmosphere)
Show Figures

Figure 1

Back to TopTop