Research About Permafrost–Atmosphere Interactions (2nd Edition)

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Biosphere/Hydrosphere/Land–Atmosphere Interactions".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 554

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Cryospheric Science and Frozen Soil Engineering, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: permafrost; land–atmosphere interaction; thermo-hydro-mechanical coupling process
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Interests: frozen soil; thermal radiation regulation; energy exchange between engineering underlying-atmosphere

E-Mail Website
Guest Editor
Key Laboratory of Cryospheric Science and Frozen Soil Engineering, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Interests: permafrost; land–atmosphere interaction; engineering risk assessment; frozen soil engineering

Special Issue Information

Dear Colleagues,

This Special Issue is the second volume of the Special Issue entitled "Research About Permafrost–Atmosphere Interactions", which was published in Atmosphere in 2024 (https://www.mdpi.com/journal/atmosphere/special_issues/033O3J2299).

Permafrost results from exchanging and developing material and energy between the Earth and the atmosphere. On the one hand, changes in the atmosphere can lead to changes in permafrost; on the other hand, changes in permafrost can also impact the climate system. Studying the mutual feedback mechanism between permafrost and the atmosphere is crucial for understanding the global balance of nature, hydrological processes, material and energy exchange, and other related fields.

Current research has made significant advancements in using mathematical modeling tools to predict the effects of atmospheric changes on permafrost. However, a limited number of researchers are studying the feedback mechanism of permafrost changes on the atmosphere, and even fewer are studying the mutual feedback mechanism between the two. This Special Issue aims to publish research that combines these three aspects. We encourage the submission of papers that focus on new technologies and methods and the application of traditional technologies in innovative ways to study the mutual feedback mechanism between permafrost and the atmosphere. The submission content for this Special Issue can include modeling and predicting the correlation between permafrost and the atmosphere using innovative mathematical techniques and new observation results obtained from ground or spatial measurement data analysis.

Dr. Ruiqiang Bai
Dr. Zhilang You
Dr. Guanji Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • permafrost
  • land–atmosphere interaction
  • thermo-hydro-mechanical coupling process
  • cold region engineering
  • heat reflective technology
  • climate change
  • ecosystem
  • remote sensing
  • radar

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3455 KiB  
Article
Spatiotemporal Dynamics of Retrogressive Thaw Slumps in the Shulenanshan Region of the Western Qilian Mountains
by Yu Zhou, Qingnan Zhang, Guoyu Li, Qingsong Du, Dun Chen, Junhao Chen, Anshuang Su, Miao Wang, Xu Wang and Benfeng Wang
Atmosphere 2025, 16(4), 466; https://doi.org/10.3390/atmos16040466 - 17 Apr 2025
Viewed by 164
Abstract
Climate warming is accelerating the degradation of permafrost, particularly in mid- to low-latitude regions, resulting in the widespread formation of thermokarst landscapes, including retrogressive thaw slumps (RTSs). These landforms, which are predominantly formed by the thawing of ice-rich permafrost, have been shown to [...] Read more.
Climate warming is accelerating the degradation of permafrost, particularly in mid- to low-latitude regions, resulting in the widespread formation of thermokarst landscapes, including retrogressive thaw slumps (RTSs). These landforms, which are predominantly formed by the thawing of ice-rich permafrost, have been shown to impact topography, hydrology, and ecosystem dynamics. However, spatiotemporal changes in RTS distribution and development in mid- to low-latitude permafrost regions are not well understood. This study investigates RTS spatiotemporal dynamics in the Heshenling area of the western Qilian Mountains using multi-temporal PlanetScope and Google Earth imagery, along with Sentinel-1 InSAR data acquired from 2014 to 2023. The results reveal 20 RTSs, averaging 3.7 ha in area, primarily distributed on slopes of 7–23° and at elevations of 3455–3651 m a.s.l. The deformation rates of RTSs ranged from −54 to 27 mm/year. Three developmental stages—active, stable, and mature—were identified through analysis of surface deformation and geometric variations. Active RTSs exhibited accelerated headscarp retreat and debris tongue expansion, with some slumps expanding by up to 35%. This study highlights high temperatures and rainfall as potential factors contributing to the accelerated development of RTS in arid alpine environments, and suggests that RTS activity is likely to accelerate with continued climate change. Full article
(This article belongs to the Special Issue Research About Permafrost–Atmosphere Interactions (2nd Edition))
Show Figures

Figure 1

15 pages, 2513 KiB  
Article
Analysis of Flux Contribution Area in a Peatland of the Permafrost Zone in the Greater Khingan Mountains
by Jizhe Lian, Li Sun, Yongsi Wang, Xianwei Wang and Yu Du
Atmosphere 2025, 16(4), 452; https://doi.org/10.3390/atmos16040452 - 14 Apr 2025
Viewed by 211
Abstract
Flux contribution area analysis is a valuable method for identifying greenhouse gas flux sources and their spatiotemporal variations. Flux footprint models are commonly applied to determine the origin of flux observations and estimate the location, size, and relative contributions of different flux source [...] Read more.
Flux contribution area analysis is a valuable method for identifying greenhouse gas flux sources and their spatiotemporal variations. Flux footprint models are commonly applied to determine the origin of flux observations and estimate the location, size, and relative contributions of different flux source regions. Based on eddy covariance observation data, this study utilized the Kljun model and ART Footprint Tool to analyze the source area dynamics of peatland CO2 fluxes in the permafrost region of the Greater Khingan Mountains, examining the distribution characteristics of flux contribution areas across different seasons, and atmospheric conditions, while also assessing the influence of vegetation types on these areas. The results indicated that: (1) due to regional climate conditions and terrain, the predominant wind direction in all seasons was northeast-southwest, aligning with the main flux contribution direction; (2) when the flux contribution area reached 90%, the maximum source area distances under the stable and unstable atmospheric conditions were 393.3 and 185.6 m, respectively, with the range and distance of flux contribution areas being significantly larger under stable conditions; and (3) the peatland vegetation primarily consisted of trees, tall shrubs, dwarf shrubs, sedges, and mosses, among which shrub communities dominating flux contribution areas (55.6–59.1%) contribute the most to the flux contribution areas, followed by sedges (16.7–17.7%) and mosses (18.6–19.9%), while the influence of trees (0.4–0.6%) was minimal. Full article
(This article belongs to the Special Issue Research About Permafrost–Atmosphere Interactions (2nd Edition))
Show Figures

Figure 1

Back to TopTop