Variability and Predictability of Space Weather and the Ionosphere: Recent Advances (2nd Edition)

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Upper Atmosphere".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 216

Special Issue Editor


E-Mail Website
Guest Editor
Institute for Scientific Research, Boston College, Chestnut Hill, MA 02467, USA
Interests: ionospheric and space weather research and applications; GNSS science and technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the second edition of the Special Issue titled “Variability and Predictability of Space Weather and the Ionosphere: Recent Advances” (https://www.mdpi.com/journal/atmosphere/special_issues/045W5QHJC8), published in Atmosphere, which will cover all aspects of space weather issues.

Studying complex systems such as Space Weather and the Ionosphere is relevant to understanding the physical processes involved (knowledge) and society’s use of such systems (applications). New approaches, including the chaotic description of such systems and the development of advanced machine learning algorithms, make it possible to advance in the ability to model and predict the time evolution of their variables. It is of particular importance to have an updated view of these new approaches and their current or potential use to study and model Space Weather and Ionosphere variability and predictability. This Special Issue aims to provide a comprehensive view of the advancements in this field. Particular emphasis, though not exclusive, should be given to approaches that combine chaos theoretical descriptions and advanced machine learning algorithms when applied to Ionosphere and Space Weather basic modelling and society-oriented research. For this reason, we encourage colleagues to submit papers with this perspective to provide, in this Special Issue, an updated view on the subject.

Prof. Dr. Sandro Radicella
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • space weather modelling
  • ionosphere modelling
  • chaos
  • machine learning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 10829 KiB  
Article
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
by Iurii Cherniak, David Altadill, Irina Zakharenkova, Víctor de Paula, Víctor Navas-Portella, Douglas Hunt, Antoni Segarra and Ivan Galkin
Atmosphere 2025, 16(7), 804; https://doi.org/10.3390/atmos16070804 - 1 Jul 2025
Abstract
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric [...] Read more.
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements. Full article
Show Figures

Figure 1

Back to TopTop