Airborne Micro and Nanoplastics: Detection, Dynamics, and Exposure Assessment

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Quality".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 333

Special Issue Editor


E-Mail Website
Guest Editor
Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
Interests: characterization of atmospheric aerosols; air pollution mechanism; secondary aerosol formation; risk assessment upon microplastics exposure; microplastics and nanoplastics detection in the environment; atmospheric chemistry modeling; chemical aging process of airborne microplastics and nanoplastics in the atmosphere

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Airborne Micro and Nanoplastics: Detection, Dynamics, and Exposure Assessment”, aims to provide a multidisciplinary platform for advancing our understanding of microplastics and nanoplastics in the atmosphere. This Special Issue will focus on elucidating the sources, detection, spatial distribution, atmospheric transport, and chemical transformation of these particles, as well as evaluate their potential health and ecological impacts. By integrating cutting-edge sampling techniques, state-of-the-art analytical instrumentation, and innovative atmospheric modeling, this Special Issue aims to address knowledge gaps, foster the development of novel risk assessment and mitigation strategies, and ultimately provide robust scientific evidence to inform air quality management and public health policies.

Dr. Yangyang Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • airborne microplastics
  • airborne nanoplastics detection methods
  • atmospheric transport
  • exposure assessment
  • chemical transformation
  • environmental risk
  • air quality
  • interdisciplinary research

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2992 KiB  
Article
Simultaneous Determination of Six Common Microplastics by a Domestic Py-GC/MS
by Yuanqiao Zhou, Bingyue Fu, Jinshui Che and Xingnan Ye
Atmosphere 2025, 16(4), 476; https://doi.org/10.3390/atmos16040476 - 19 Apr 2025
Viewed by 223
Abstract
Pyrolysis coupled with gas chromatography–mass spectrometry (Py-GC/MS) is a novel technology capable of detecting micro- and nanoplastics without a size limit. However, the application of Py-GC/MS to airborne microplastic analysis remains inconsistent. This study explores optimal Py-GC/MS procedures using a domestic HenxiTM [...] Read more.
Pyrolysis coupled with gas chromatography–mass spectrometry (Py-GC/MS) is a novel technology capable of detecting micro- and nanoplastics without a size limit. However, the application of Py-GC/MS to airborne microplastic analysis remains inconsistent. This study explores optimal Py-GC/MS procedures using a domestic HenxiTM PY-1S pyrolyzer-based Py-GC/MS. The initial weight loss of PVC occurs at approximately 260 °C, indicating that the maximum thermal desorption temperature prior to pyrolysis should not exceed 250 °C. To avoid interference from semi-volatile organics present in the sample and injected air, it is essential to purge the sample with pure helium at elevated temperatures before pyrolysis. Microplastic standards can be prepared by ultrasonicating a water–microplastic dispersion system. Significant interactions between microplastic mixtures were observed during co-pyrolysis, indicating that the interactions of mixtures cannot be ignored during the optimization of quantitative references. The optimal procedure features good linearity (R2 > 0.98), low detection limit (0.06~0.0002 μg), and acceptable precisions (RSD < 10% in 8 days). Microplastics determined by the domestic PY-1S pyrolyzer coupled with a GC/MS system are comparable to those of the well-established PY-3030D-based Py-GC/MS, indicating that the domestic pyrolyzer coupled with GC/MS is a reliable and powerful tool for microplastic analysis. Full article
Show Figures

Figure 1

Back to TopTop