Ultraintense Ultrashort Pulse Lasers
A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Optics and Lasers".
Deadline for manuscript submissions: closed (30 November 2012) | Viewed by 185123
Special Issue Editor
Special Issue Information
Dear Colleagues,
Understanding nature in ever faster and smaller timescales, be it in atoms, molecules or solids, is a prerequisite for many new developments in physics, chemistry, biology, and technology—reaching from medical applications to energy-transforming and energy-storing devices. This goal calls for new tools and techniques. Basically all of them are based on the development of ultraintense ultrashort laser pulses. Coherent light at the extremes—in intensity and pulse duration—will offer completely new possibilities in research. It is obvious that the advent of ultrashort pulse free electron lasers (FELs), e.g., the Linac Coherent Light source (LCLS) with pulses on the fs-level having 1013 photons in the keV range per pulse, has opened the way for a plethora of experiments, e.g., in 4D imaging, inner-shell spectroscopy and many more. In order to achieve comparable features on a table-top scale, the development of “conventional” ultraintense ultrashort pulse lasers is pushed forward strongly. Laser driven electron acceleration—again being suitable for the injection into an FEL—laser driven ion acceleration, which can be directly used in medical applications, and non-linear processes like sum-frequency generation, difference-frequency generation or high-order hamronic generation make these lasers extremely powerfull for the generation of sources with photon energies ranging from the infrared to the x-ray and at a pulse duration down to attoseconds. While chirped-pulse-amplifiers have become standard and have been more and more improved over the last years, optical parametric amplification gets more and more promising since broad bandwidth—necessary for the generation of ultrashort pulses—can be preserved during the amplification process. In any case, the development over the laser years has been very successful: Near-single-cycle-pulses, control and stabilization of the carrier-envelope-phase, attosecond pulse generation, high energy laser-driven electrons are only a few examples, and—not to forget—charachterization methods like FROG, SPIDER etc.
The special issue of the journal Applied Sciences “Ultraintense Ultrashort Pulse Lasers” aims to cover recent advances in the development of lasers of any type (OPAs to FELS) and any wavelength range (IR to x-ray) which provide ultraintense ultrashort pulses.
Prof. Dr. Reinhard Kienberger
Guest Editor
Keywords
- ultrafast lasers
- ultrashort pulses
- optical parametric amplification
- chirped pulse amplification
- carrier-enverlope phase
- few-cycle pulses
- free-electron-lasers
- attosecond pulses
- laser driven electron-acceleration
- laser driven ion-acceleration
- FROG
- SPIDER
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue policies can be found here.