# Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Linear Light Bullets

#### 2.1. Medium-Free Generation of Linear Light Bullets

#### 2.2. Ambiguity of the Poynting Vector Maps of Nondiffracting Beams

_{2}tend to become nearly identical again so that a wavefront-division based detection technique can be well applied to characterize the beams. This is of relevance to the experiments we will report on.

**Figure 1.**Ambiguity of local wavefronts of nondiffracting beams in comparison to a convergent beam (simplified ray representation): (

**a**) Gaussian-type beam with unambiguous Poynting vectors (red arrows) as detected by a Shack-Hartmann wavefront sensor at a certain plane WS

_{1}(gray); (

**b**) Bessel beam with an ambiguity in the superposition zone WS

_{2}(gray) and a ring-shaped unambiguous angular distribution at a distance WS

_{3}behind the superposition zone (gray). Linear light bullets in absence of a medium are created by constructive interference in superposition zones like shown in (

**b**).

**Figure 2.**Intensity profiles of (

**a**) a Bessel and (

**b**) a needle beam schematically represented for an arbitrary plane perpendicular to the propagation axis (color-coded, red = maximum intensity, green = minimum intensity). Needle beams correspond to Bessel beams which are truncated exactly at the first zero (self-apodized truncation).

#### 2.3. Nonlinear and Linear Light Bullets: Brief Remark on the Terminology

#### 2.4. Pulsed Needle Beams and Highly Localized Wavepackets

**Figure 3.**Self-apodized truncation condition for the aperture-less Bessel-like needle pulses (schematically, after ref. [44]). Curve on the separated blue plane: radial Bessel intensity profile, red area: central lobe, white area: not generated outer parts (Λ = diameter of central lobe, z = propagation axis, D = axicon diameter, θ

_{max}= maximum allowed half conical angle, Δz

_{min}= minimum extension of the needle-shaped nondiffracting zone, J

_{0}= zero order first kind Bessel function).

_{max}is determined by the finite diameter D of the initial transversal field under self-apodized conditions [44]. For a wavelength λ, it amounts roughly to

_{max}= D

^{2}/4λ

_{NB}of the pulsed needle beam can be represented (after some transformation) by the following Equations (2)–(7):

_{0}(r,k

_{r}) represents a wavelength-dependent Bessel distribution function in radial direction, Φ(r,t) is a complex phase term, τ

_{a}a radial-dependent time separation between two interfering pulses and τ

_{0}an input pulse duration (standard deviation). In good approximation, one can replace the integral in Equation (3) by the expression

## 3. Experimental Section

**Figure 4.**Experimental setup for adaptive shaping and detection of paraxial linear few-cycle light bullets (schematically). For collinear autocorrelation, a balanced interferometer generates two identical replica of the pulse. The variable time delay (Δτ) is induced by the length variation (Δz) of the interferometer arm with a piezo actuator. The SLM shapes the light bullets in finite but extended zones of stable nondiffracting propagation. The combination with second order nonlinear conversion and 2D detection enables to extract spatially resolved pulse duration via image autocorrelation, as well as wavefront curvature, vortex characterization, and highly resolved time delay mapping.

## 4. Results and Discussion

**Figure 5.**Flexible generation of few-cycle light bullets with the characteristics of spatially oscillation-free, temporally nondiffracting highly localized wavepackets (HLWs): (

**a**) gray value distributions corresponding to the phase maps of axicons; (

**b**) measured time-integrated intensity maps of a set of simultaneously formed light bullets of different spatial structures in a transversal plane (disks, lines, rings and stadiums). Both the new types of shaping phase elements and the HLWs represent generalizations of the conventional approaches of axicons and nondiffracting beams, respectively. Arrays of programmable HLWs enable to realize time-wavefront sensors with spatially encoded spots and flexible array geometries.

**Figure 6.**Nondiffracting intensity propagation of a stadium-shaped light bullet (time integrated, field of view 2.7 × 2.7 mm

^{2}, detected after SHG at 400 nm, initial pulse duration 6.5 fs).

**Figure 7.**Temporal autocorrelation function of a stadium-shaped few-cycle light bullet at a distance of 80 mm;

**left**: cut through the major (long) axis;

**right**: cut through the minor (short) axis.

**Figure 8.**Temporal autocorrelation function of a stadium-shaped light bullet measured at three different axial distances (80 mm, 100 mm and 120 mm). For a sech

^{2}-pulse shape, one can estimate a nearly constant pulse duration of about 6.6 fs for the propagating light bullet.

^{2}-pulse shape, the corresponding final pulse duration is 6.6 fs at an input pulse duration of 6.5 fs. Thus, the results indicate a very stable propagation behavior also in temporal domain within the fluctuations (the estimated error bar was about 0.1 fs). In another experiment, the spectral phase of a circular light bullet (pulsed needle beam, depth of the nondiffracting zone 1 m) was characterized with few-cycle spatially integrated spectral phase interferometry for direct electric field reconstruction (FC-SPIDER, Figure 9). The retrieved final pulse duration (τ

_{M}= 6.4 fs) was found to be within the error bar as well.

**Figure 9.**Phase transfer in a circular nondiffracting light bullet (pulsed needle beam, length of the nondiffracting zone about 1 m), measured with an FC-SPIDER (APE); black curve: temporal phase, dashed red curve: pulse calculated for the Fourier transform limited case, blue curve: pulse retrieved from measuring data. τ

_{FL}and τ

_{M }are the corresponding pulse durations, respectively. The distance of the entrance window of the SPIDER from the SLM was about 20 cm (the effective distance was higher because of the additional internal path in the SPIDER system). The diameter of the light bullet at the entrance of the SPIDER was 1 mm.

## 5. Conclusions

## Acknowledgments

## Conflict of Interest

## References

- Mollenauer, L.F.; Gordon, J.P. Solitons in Optical Fibers: Fundamentals and Applications; Elsevier-Academic Press: Amsterdam, The Netherland, 2006. [Google Scholar]
- Spatial Solitons; Trillo, S.; Torruellas, W. (Eds.) Springer-Verlag: Berlin, Germany, 2001.
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons—From Fibers to Photonic Crystals; Elsevier-Academic Press: Amsterdam, The Netherland, 2003. [Google Scholar]
- Boyd, R.W.; Lukishova, S.G.; Shen, Y.R. Self-Focusing: Past and Present; Springer Science and Business Media: New York, NY, USA, 2009; p. 451. [Google Scholar]
- Silberberg, Y. Collapse of optical pulses. Opt. Lett.
**1990**, 15, 1282–1284. [Google Scholar] [CrossRef] - Mihalache, D. Linear and nonlinear light bullets: Recent theoretical and experimental studies. Rom. J. Phys.
**2012**, 57, 352–371. [Google Scholar] - Stratton, J.A. Electromagnetic Theory; McGraw Hill: New York, NY, USA, 1941. [Google Scholar]
- Durnin, J. Exact solution for nondiffracting beams I—The scalar theory. J. Opt. Soc. Am. A
**1987**, 4, 651–654. [Google Scholar] [CrossRef] - Durnin, J.; Miceli, J.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett.
**1987**, 58, 1499–1501. [Google Scholar] - Turunen, J.; Friberg, A.T. Propagation-Invariant Optical Fields. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherland, 2009; Volume 54, pp. 1–88. [Google Scholar]
- Localized Waves, Theory and Experiments; Zamboni-Rached, M.; Recami, E.; Hernández-Figueroa, H.E. (Eds.) Wiley & Sons: New York, NY, USA, 2008.
- Lu, J.Y.; Greenleaf, J.F. Nondiffracting X-waves. Exact solutions to free space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelec. Freq. Control
**1992**, 39, 19–31. [Google Scholar] [CrossRef] - Lu, J.Y.; Greenleaf, J.F. Experimental verification of nondiffracting X waves. IEEE Trans. Ultrason. Ferroelec. Freq. Control
**1992**, 39, 441–446. [Google Scholar] [CrossRef] - Saari, P.; Reivelt, K. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett.
**1997**, 79, 4135–4138. [Google Scholar] [CrossRef] - Grunwald, R.; Griebner, U.; Neumann, U.; Kummrow, A.; Nibbering, E.T.J.; Piché, M.; Rousseau, G.; Fortin, M.; Kebbel, V. Generation of Ultrashort-Pulse Nondiffracting Beams and X-waves with Thin-Film Axicons. In Ultrafast Phenomena XIII; Murnane, M., Scherer, N.F., Weiner, A.M., Eds.; Springer-Verlag: New York, NY, USA, 2002; pp. 247–249. [Google Scholar]
- Grunwald, R.; Kebbel, V.; Griebner, U.; Neumann, U.; Kummrow, A.; Rini, M.; Nibbering, M.T.J.; Piché, M.; Rousseau, G.; Fortin, M. Generation and characterization of spatially and temporally localized few-cycle optical wavepackets. Phys. Rev. A
**2003**, 67, 063820. [Google Scholar] [CrossRef] - Grunwald, R. Thin-Film Microoptics—New Frontiers of Spatio-Temporal Beam Shaping; Elsevier: Amsterdam, The Netherland, 2007. [Google Scholar]
- Conti, C.; Trillo, S.; di Trapani, P.; Valiulis, G.; Jedrkiewicz, O.; Trull, J. Electromagnetic nonlinear X-waves. arXiv:physics/0204066
**2002**. [Google Scholar] - Porras, M.A.; Trillo, S.; Conti, C.; di Trapani, P. Paraxial envelope X waves. Opt. Lett.
**2003**, 28, 1090–1092. [Google Scholar] [CrossRef] - Di Trapani, P.; Valiulis, G.; Piskarskas, A.; Jedrkiewicz, O.; Trull, J.; Conti, C.; Trillo, S. Spontaneously generated X-shaped light bullets. Phys. Rev. Lett.
**2003**, 91. [Google Scholar] [CrossRef] - Ponomarenko, S.A.; Agrawal, G.P. Linear optical bullets. Opt. Commun.
**2006**, 261, 1–4. [Google Scholar] [CrossRef] - Gutiérrez-Vega, J.C.; Iturbe-Castillo, M.D.; Chávez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett.
**2000**, 25, 1493–1495. [Google Scholar] [CrossRef] - Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of Accelerating Airy Beams. Phys. Rev. Lett.
**2007**, 99. [Google Scholar] [CrossRef] - Ring, J.D.; Lindberg, J.; Mourka, A.; Mazilu, M.; Dholakia, K.; Dennis, M.R. Auto-focusing and self-healing of Pearcey beams. Opt. Express
**2012**, 20, 18955–18966. [Google Scholar] - Zhang, P.; Hu, Y.; Li, T.; Cannan, D.; Yin, X.; Morandotti, R.; Chen, Z.; Zhang, X. Nonparaxial Mathieu and Weber Accelerating beams. Phys. Rev. Lett.
**2012**, 109. [Google Scholar] [CrossRef] - Aleahmad, P.; Miri, M.-A.; Mills, M.S.; Kaminer, I.; Segev, M.; Christodoulides, D.N. Fully vectorial accelerating diffraction-free Helmholtz beams. Phys. Rev. Lett.
**2012**, 109. [Google Scholar] [CrossRef] - Lotti, A.; Couairon, A.; Faccio, D.; di Trapani, P. Energy-flux characterization of conical and space-time coupled wave packets. Phys. Rev. A
**2010**, 81. [Google Scholar] [CrossRef] - Faccio, D.; Lotti, A.; Matijosius, A.; Bragheri, F.; Degiorgio, V.; Couairon, A.; di Trapani, P. Experimental energy-density flux characterization of ultrashort laser pulse filaments. Opt. Express.
**2009**, 17, 8193–8200. [Google Scholar] - Bonaretti, F.; Faccio, D.; Clerici, M.; Biegert, J.; di Trapani, P. Spatiotemporal amplitude and phase retrieval of Bessel-X pulses using a Hartmann-Shack sensor. Opt. Express
**2009**, 17, 9804–9809. [Google Scholar] [CrossRef] - Rubino, E.; Faccio, D.; Tartara, L.; Bates, P.K.; Chalus, O.; Clerici, M.; Bonaretti, F.; Biegert, J.; di Trapani, P. Spatiotemporal amplitude and phase retrieval of space-time coupled ultrashort pulses using the Shackled-FROG technique. Opt. Lett.
**2009**, 34, 3854–3856. [Google Scholar] - Lü, B.; Huang, W.; Zhang, B.; Kong, F.; Zhai, Q. Focusing properties of Bessel beams. Opt. Commun.
**1996**, 131, 223–228. [Google Scholar] [CrossRef] - Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys.
**1979**, 47, 264–267. [Google Scholar] [CrossRef] - Greenberger, D.M. Comment on nonspreading wave packets. Am. J. Phys.
**1980**, 48, 256. [Google Scholar] [CrossRef] - Besieris, I.M.; Shaarawi, A.M.; Ziolkowski, R.W. Nondispersive accelerating wave packets. Am. J. Phys.
**1994**, 62, 519–521. [Google Scholar] [CrossRef] - Kaminer, I.; Bekenstein, R.; Nemirovsky, J.; Segev, M. Nondiffracting accelerating wave packets of Maxwell’s equations. Phys. Rev. Lett.
**2012**, 108. [Google Scholar] [CrossRef] - Chen, Z. Viewpoint: Light bends itself into an arc. Physics
**2012**, 5, 44. [Google Scholar] [CrossRef] - Courvoisier, F.; Mathis, L.; Froehly, A.; Giust, R.; Furfaro, L.; Lacourt, P.A.; Jacquot, M.; Dudley, J.M. Sending femtosecond pulses in circles: Highly nonparaxial accelerating beams. Opt. Lett.
**2012**, 37, 736–738. [Google Scholar] - Chremmos, Ch.; Chen, Z.; Christodoulides, D.N.; Efremidis, N.K. Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics. Phys. Rev. A
**2012**, 85. [Google Scholar] [CrossRef] - Sztul, H.I.; Alfano, R.R. The Poynting vector and angular momentum of Airy beams. Opt. Express
**2008**, 16, 9411–9416. [Google Scholar] [CrossRef] - Xu, Y.; Zhou, G. The far field divergent properties of an Airy beam. Opt. Laser Technol.
**2012**, 44, 1318–1323. [Google Scholar] - Deng, D.; Du, S.; Guo, Q. Energy flow and angular momentum density of nonparaxial Airy beams. Opt. Commun.
**2013**, 289, 6–9. [Google Scholar] [CrossRef] - Wofsey, M. Focus: Light beam with a curve. Phys. Rev. Focus
**2007**, 20, 19. [Google Scholar] [CrossRef] - Grunwald, R.; Bock, M.; Kebbel, V.; Huferath, S.; Neumann, U.; Steinmeyer, G.; Stibenz, G.; Néron, J.-L.; Piché, M. Ultrashort-pulsed truncated polychromatic Bessel-Gauss beams. Opt. Express
**2008**, 16, 1077–1089. [Google Scholar] - Bock, M.; Das, S.K.; Grunwald, R. Programmable ultrashort-pulsed flying images. Opt. Express
**2009**, 17, 7465–7478. [Google Scholar] - Saari, P.; Sõnajalg, H. Pulsed Bessel beams. Laser Phys.
**1997**, 7, 32–39. [Google Scholar] - Porras, M.; Valiulis, G.; di Trapani, P. Unified description of Bessel X waves with cone dispersion and tilted pulses. Phys. Rev. E
**2003**, 68. [Google Scholar] [CrossRef] - Grunwald, R.; Bock, M. Spatially encoded localized wavepackets for ultrafast optical data transfer. J. Eur. Opt. Soc. Rap. Public.
**2012**, 7. [Google Scholar] [CrossRef] - Grunwald, R.; Bock, M.; Das, S.K. Light bullets, light rings and flying images: Adaptive spatial modulation of ultrashort laser pulses. KIRAN
**2010**, 21, 21–23. [Google Scholar] - Bock, M.; Das, S.K.; Grunwald, R. Ultrashort highly localized wavepackets. Opt. Express
**2012**, 20, 12563–12578. [Google Scholar] [CrossRef] - Bock, M.; Das, S.K.; Grunwald, R.; Osten, S.; Staudt, P.; Stibenz, G. Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators. Appl. Phys. Lett.
**2008**, 92. [Google Scholar] [CrossRef] - Bock, M.; Das, S.K.; Fischer, C.; Diehl, M.; Börner, P.; Grunwald, R. Reconfigurable wavefront sensor for ultrashort pulses. Opt. Lett.
**2012**, 37, 1154–1156. [Google Scholar] - Bock, M.; Jahns, J.; Grunwald, R. Few-cycle high-contrast vortex pulses. Opt. Lett.
**2012**, 37, 3804–3806. [Google Scholar]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Bock, M.; Grunwald, R.
Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets. *Appl. Sci.* **2013**, *3*, 139-152.
https://doi.org/10.3390/app3010139

**AMA Style**

Bock M, Grunwald R.
Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets. *Applied Sciences*. 2013; 3(1):139-152.
https://doi.org/10.3390/app3010139

**Chicago/Turabian Style**

Bock, Martin, and Ruediger Grunwald.
2013. "Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets" *Applied Sciences* 3, no. 1: 139-152.
https://doi.org/10.3390/app3010139