Development of Value-Added Chicken Burgers by Adding Pumpkin Peel Powder as a Sustainable Ingredient
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Reagents
2.2. Color Analysis
2.3. Extraction of Carotenoids and Determination of Total Carotenoids
2.4. Determination of Antioxidant Activity
2.5. HPLC-DAD Analysis of Carotenoids
2.6. Production of Fortified Burger
2.7. Physical-Chemical and Microbiological Analysis
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Color Characteristics of PPP
3.2. TCC and Antioxidant Activity of Carotenoid Extracts from PPP
3.3. Chromatographic Characterization of Carotenoid Extracts from PPP Extract
3.4. Nutritional Considerations of Meat Used for Burgers
3.5. Physical-Chemical Analysis and Color of Fortified Chicken Burgers
3.6. Microbiological Characteristics of Fortified Chicken Burgers
3.7. Sensory Evaluation of Fortified Chicken Burgers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PPP | peel powder of pumpkins |
LE | lutein equivalents |
ZDE | zeaxanthin dipalmitate equivalents |
HPLC | high-performance liquid chromatography |
DAD | diode array detector |
UAE | ultrasound-assisted extraction |
TCC | total carotenoid content |
ORAC | oxygen radical absorbance capacity |
Appendix A
References
- EUROSTAT. 2025. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates (accessed on 2 April 2025).
- Singh, K.; Kumar, T.; Patel, V.; Kumar, V.; Sharma, S.; Pradesh Krishi Vishvavidyalaya, H.; Pradesh, H.; Jyoti Rani, I.; Kavindra Singh, C.; Rani, J. A review on the conversion of food wastes and by-products into value added products. Int. J. Chem. Stud. 2019, 7, 2068–2073. [Google Scholar]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Ranjha, M.M.A.N.; Rozanska, M.B.; Irfan, S.; Shafique, B.; Rahim, M.A.; Khalid, M.Z.; Abdi, G.; Kowalczewski, P.Ł. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci. 2022, 17, 1075–1093. [Google Scholar] [CrossRef]
- Aziz, A.; Noreen, S.; Khalid, W.; Ejaz, A.; Faiz ul Rasool, I.; Maham, N.; Munir, A.; Farwa, N.; Javed, M.; Ercisli, S.; et al. Pumpkin and pumpkin byproducts: Phytochemical constitutes, food application and health benefits. ACS Omega 2023, 8, 23346–23357. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Quddoos, M.Y.; et al. A comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem. Adv. 2022, 1, 100067. [Google Scholar] [CrossRef]
- Gavril Raţu, R.N.; Stoica, F.; Lips, F.D.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Pumpkin and pumpkin by-products: A comprehensive overview of phytochemicals; extraction; health benefits; and food applications. Foods 2024, 13, 2694. [Google Scholar] [CrossRef]
- Espinales, C.; Baldeón, M.; Bravo, C.; Toledo, H.; Carballo, J.; Romero-Peña, M.; Cáceres, P.J. Strategies for healthier meat foods: An overview. Prev. Nutr. Food Sci. 2024, 29, 18–30. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.S.; Lee, J.H. Carotenoids: Dietary sources; extraction; encapsulation; bioavailability; and health benefits-a review of recent advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Verma, A.K.; Banerjee, R.; Sharma, B.D. Quality characteristics of low fat chicken nuggets: Effect of salt substitute blend and pea hull flour. J. Food Sci. Technol. 2015, 52, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Longato, E.; Lucas-González, R.; Peiretti, P.G.; Meineri, G.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Fernández-López, J. The effect of natural ingredients (amaranth and pumpkin seeds) on the quality properties of chicken burgers. Food Bioproc. Technol. 2017, 10, 2060–2068. [Google Scholar] [CrossRef]
- Serdaroğlu, M.; Kavuşan, H.S.; Îpek, G.; Öztürk, B. Evaluation of the quality of beef patties formulated with dried pumpkin pulp and seed. Korean J. Food Sci. Anim. Resour. 2018, 38, 1–13. [Google Scholar] [CrossRef]
- Rolim de Melo, F.A.B.; Fonseca Galvão, M.B.; Félix da Costa, A.; da Silva, C.F.; Campos Guerra, J.M.; Montenegro Stamford, T.C. Development and evaluation of nutritional and quality standard of beef burger supplemented with pumpkin (Cucurbita moschata) seed flour. Foods 2024, 13, 1702. [Google Scholar] [CrossRef]
- Öztürk, T.; Turhan, S. Physicochemical properties of pumpkin (Cucurbita pepo L.) seed kernel flour and its utilization in beef meatballs as a fat replacer and functional ingredient. J. Food Process. Preserv. 2020, 44, e14695. [Google Scholar] [CrossRef]
- Haddad, M.A.; Al–Dalain, S.Y.; Al-Fraihat, A.H.; Parisi, S.; Parisi, C.; Arabiat, S.; Alqaraleh, S.Y. Use of fresh pumpkin fruits for producing chicken sausage suggests functional properties. Curr. Res. Nutr. Food Sci. 2023, 11, 666–675. [Google Scholar] [CrossRef]
- Abilmazhinova, B.; Rebezov, M.; Fedoseeva, N.; Belookov, A.; Belookova, O.; Mironova, I.; Nigmatyanov, A.; Gizatova, N. Study chemical and vitamin composition of horsemeat cutlets with addition of pumpkin. Int. J. Psychosoc. Rehabil. 2020, 24, 7614. [Google Scholar]
- Pinna, N.; Ianni, F.; Blasi, F.; Stefani, A.; Codini, M.; Sabatini, S.; Schoubben, A.; Cossignani, L. Unconventional extraction of total non-polar carotenoids from pumpkin pulp and their nanoencapsulation. Molecules 2022, 27, 8240. [Google Scholar] [CrossRef] [PubMed]
- EasyRGB. Convert Color Data Into Different Standards and Color Spaces. 2025. Available online: https://www.easyrgb.com/en/convert.php (accessed on 27 January 2025).
- Persichetti, E.; De Michele, A.; Codini, M.; Traina, G. Antioxidative capacity of Lactobacillus fermentum LF31 evaluated in vitro by oxygen radical absorbance capacity assay. Nutrition 2014, 30, 936–938. [Google Scholar] [CrossRef]
- Pinna, N.; Ianni, F.; Selvaggini, R.; Urbani, S.; Codini, M.; Grispoldi, L.; Cenci-Goga, B.T.; Cossignani, L.; Blasi, F. Valorization of pumpkin byproducts: Antioxidant activity and carotenoid characterization of extracts from peel and filaments. Foods 2023, 12, 4035. [Google Scholar] [CrossRef]
- Kurz, C.; Carle, R.; Schieber, A. HPLC-DAD-MSn characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chem. 2008, 110, 522–530. [Google Scholar] [CrossRef]
- Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of new carotenoid esters in mango and citrus. J. Agric. Food Chem. 2016, 64, 8207–8224. [Google Scholar] [CrossRef]
- Grispoldi, L.; Karama, M.; Sechi, P.; Iulietto, M.F.; Hadjicharalambous, C.; Cenci-Goga, B.T. Evaluation of a nitrite-free commercial preparation in the production of swine and roe deer (Capreolus capreolus) salami. Ital. J. Anim. Sci. 2021, 20, 132–142. [Google Scholar] [CrossRef]
- Cenci-Goga, B.T.; Sechi, P.; Iulietto, M.F.; Amirjalali, S.; Barbera, S.; Karama, M.; Aly, S.S.; Grispoldi, L. Characterization and growth under different storage temperatures of ropy slime-producing Leuconostoc mesenteroides isolated from cooked meat products. J. Food Prot. 2020, 83, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- ISO 4121:2003; Sensory Analysis-Guidelines for the Use of Quantitative Response Scales. International Standards Organisation (ISO): Geneva, Switzerland, 2003.
- Sharma, M.; Bhat, R. Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods 2021, 10, 787. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Kruczek, M.; Ledwózyw-Smolén, I.; Kaszycki, P. Antioxidants and health-beneficial nutrients in fruits of eighteen Cucurbita cultivars: Analysis of diversity and dietary implications. Molecules 2020, 25, 1792. [Google Scholar] [CrossRef]
- Regione Umbria; 2022; 2023. Servizio Idrografico Regionale. Dati Pioggia Gennaio-Dicembre 2022 e 2023. Dati Termometrici (min. med. max.) Gennaio-Dicembre 2022 e 2023. Available online: https://www.regione.umbria.it/ambiente/servizio-idrografico (accessed on 31 January 2024).
- Atencio, S.; Verkempinck, S.H.E.; Bernaerts, T.; Reineke, K.; Hendrickx, M.; Van Loey, A. Impact of processing on the production of a carotenoid-rich Cucurbita maxima cv Hokkaido pumpkin juice. Food Chem. 2022, 380, 132191. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj/eng (accessed on 5 March 2025).
- US Department of Agriculture (USDA) Global Agricultural Information Network (GAIN) Report Global Agricultural Information Network. Available online: https://www.fas.usda.gov/data (accessed on 5 March 2025).
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Animal husbandry and nutrition. In Quality of Chicken Meat; Yücel, B., Taşkin, T., Eds.; IntechOpen: London, UK, 2018; Volume 63. [Google Scholar] [CrossRef]
- Santos, E.M.; Rodriguez, J.A.; Lorenzo, J.M.; Mondragón, A.C.; Pateiro, M.; Gutiérrez, E.; Ferreira, T.A. Antioxidant effect of pumpkin flower (Cucurbita maxima) in chicken patties. Foods 2022, 28, 2258. [Google Scholar] [CrossRef]
- Grispoldi, L.; Ianni, F.; Blasi, F.; Pollini, L.; Crotti, S.; Cruciani, D.; Cenci-Goga, B.T.; Cossignani, L. Apple pomace as valuable food ingredient for enhancing nutritional and antioxidant properties of Italian salami. Antioxidants 2022, 11, 1221. [Google Scholar] [CrossRef]
- Mangiapelo, L.; Ianni, F.; Pagano, C.; Grispoldi, L.; Blasi, F.; Cenci-Goga, B.T.; Perioli, L.; Cossignani, L. Role of apple pomace in the formulation of a novel healthy mayonnaise. Eur. Food Res. Technol. 2023, 249, 2835–2847. [Google Scholar] [CrossRef]
- Zargar, F.A.; Kumar, S.; Bhat, Z.F.; Kumar, P. Effect of pumpkin on the quality characteristics and storage quality of aerobically packaged chicken sausages. SpringerPlus 2014, 3, 39. Available online: http://www.springerplus.com/content/3/1/39 (accessed on 5 March 2025). [CrossRef]
- Vandorou, M.; Plakidis, C.; Tsompanidou, I.M.; Adamantidi, T.; Panagopoulou, E.A.; Tsoupras, A. A review on apple pomace bioactives for natural functional food and cosmetic products with therapeutic health-promoting properties. Int. J. Mol. Sci. 2024, 25, 10856. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Koishybayeva, A.; Korzeniowska, M. Utilization and effect of apple pomace powder on quality characteristics of turkey sausages. Foods 2024, 13, 2807. [Google Scholar] [CrossRef] [PubMed]
- Rani, R.; Yadav, S.; Thakur, N.; Kumar, S.; Han, H.; Alturki, H.A.; Ahmad, M.d.F.; Raposo, A. Effect of incorporation of pumpkin seed powder and chia seed powder on storage stability of fiber enriched chicken meat nuggets. LWT-Food Sci. Technol. 2024, 191, 115574. [Google Scholar] [CrossRef]
Color Parameters | Hokkaido | Lunga di Napoli | Mantovana | Moscata di Provenza | Violina Rugosa |
---|---|---|---|---|---|
2022 | |||||
L* | 58.66 ± 0.02 | 56.79 ± 0.01 | 59.53 ± 0.01 | 66.02 ± 0.02 | 72.43 ± 0.02 |
a* | 15.01 ± 0.01 | 0.37 ± 0.02 | 0.38 ± 0.01 | 2.59 ± 0.01 | 0.87 ± 0.02 |
b* | 56.96 ± 0.02 | 35.80 ± 0.03 | 36.98 ± 0.02 | 31.42 ± 0.03 | 33.94 ± 0.04 |
C* | 58.90 ± 0.01 | 35.80 ± 0.02 | 36.98 ± 0.02 | 31.53 ± 0.02 | 33.95 ± 0.01 |
H* | 75.24 ± 0.02 | 89.41 ± 0.01 | 89.41 ± 0.01 | 85.29 ± 0.02 | 88.53 ± 0.03 |
2023 | |||||
L* | 64.27 ± 0.01 | 72.05 ± 0.01 | 61.73 ± 0.01 | 66.58 ± 0.01 | 74.44 ± 0.01 |
a* | 13.15 ± 0.01 | −4.78 ± 0.03 | −6.96 ± 0.02 | 4.81 ± 0.01 | 0.73 ± 0.01 |
b* | 69.13 ± 0.02 | 37.94 ± 0.04 | 55.47 ± 0.02 | 28.35 ± 0.03 | 39.15 ± 0.03 |
C* | 70.37 ± 0.01 | 38.24 ± 0.02 | 55.90 ± 0.01 | 28.75 ± 0.00 | 39.16 ± 0.01 |
H* | 79.23 ± 0.01 | 97.18 ± 0.01 | 97.15 ± 0.01 | 80.37 ± 0.02 | 88.93 ± 0.02 |
Carotenoids | Hokkaido | Lunga di Napoli | Mantovana | Moscata di Provenza | Violina Rugosa |
---|---|---|---|---|---|
2022 | |||||
Free xanthophylls (µg LE/g) | 621.93 ± 14.96 | 100.78 ± 0.34 | 223.41 ± 2.24 | 1.75 ± 0.06 | 3.51 ± 0.18 |
neoxanthin | 9.40 ± 0.18 | - | 8.83 ± 0.01 | - | - |
violaxanthin | 6.89 ± 0.01 | 16.57 ± 0.13 | 9.20 ± 0.15 | - | 0.63 ± 0.00 |
antheraxanthin | 312.94 ± 6.49 | 36.64 ± 0.13 | 1.05 ± 0.04 | - | |
lutein | 216.53 ± 6.77 | 84.22 ± 0.47 | 147.55 ± 1.78 | 0.70 ± 0.02 | 2.88 ± 0.17 |
zeaxanthin | 65.15 ± 1.18 | 21.18 ± 0.44 | - | - | |
Mono-esterified xanthophylls (µg ZDE/g) | 18,870.52 ± 431.92 | 925.27 ± 21.46 | 2032.76 ± 14.16 | 123.32 ± 6.58 | 230.49 ± 13.56 |
violaxanthin myristate | 261.35 ± 7.78 | 88.67 ± 2.32 | - | 38.02 ± 3.23 | |
lutein palmitate | 1227.50 ± 4.45 | 276.15 ± 19.09 | 435.02 ± 3.01 | 13.03 ± 0.49 | 27.37 ± 2.16 |
antheraxanthin myristate | 9972.09 ± 209.03 | 186.23 ± 3.36 | 868.06 ± 6.59 | - | - |
antheraxanthin palmitate | 7409.59 ± 219.56 | 462.88 ± 5.74 | 641.01 ± 26.08 | 110.28 ± 6.09 | 165.11 ± 8.18 |
Di-esterified xanthophylls (µg ZDE/g) | 2297.61 ± 65.41 | 986.86 ± 12.72 | 395.45 ± 5.98 | 34.06 ± 0.53 | 299.98 ± 0.91 |
violaxanthin dimyristate | 94.61 ± 2.76 | - | - | 6.17 ± 0.30 | - |
antheraxanthin dilaurate | - | - | - | - | - |
lutein laurate myristate | 303.23 ± 5.47 | 293.03 ± 1.00 | 58.41 ± 3.82 | 17.48 ± 0.64 | 163.75 ± 8.01 |
2023 | |||||
Free xanthophylls (µg LE/g) | 367.97 ± 5.11 | 93.51 ± 2.08 | 202.35 ± 15.80 | 2.54 ± 0.06 | 3.87 ± 0.14 |
neoxanthin | 11.03 ± 0.31 | - | 8.08 ± 0.22 | - | 0.93 ± 0.02 |
violaxanthin | 8.95 ± 0.19 | 19.11 ± 0.03 | 14.12 ± 0.55 | - | 0.99 ± 0.03 |
antheraxanthin | 154.90 ± 4.25 | - | 21.78 ± 1.12 | 1.49 ± 0.05 | 1.94 ± 0.14 |
lutein | 134.45 ± 0.24 | 74.40 ± 2.05 | 139.80 ± 12.23 | 1.05 ± 0.01 | - |
zeaxanthin | 49.26 ± 0.51 | - | 18.56 ± 1.68 | - | - |
Mono-esterified xanthophylls (µg ZDE/g) | 9065.35 ± 208.35 | 652.18 ± 10.75 | 3968.30 ± 82.14 | 107.12 ± 9.00 | 166.88 ± 3.82 |
violaxanthin myristate | 186.68 ± 4.45 | - | 255.51 ± 12.38 | - | 34.51 ± 0.09 |
lutein palmitate | 666.36 ± 12.06 | - | 428.94 ± 2.05 | 19.28 ± 0.26 | 16.87 ± 0.18 |
antheraxanthin myristate | 4635.53 ± 105.76 | 109.99 ± 3.56 | 1913.78 ± 153.76 | - | - |
antheraxanthin palmitate | 3576.78 ± 86.09 | 542.18 ± 7.19 | 1370.08 ± 86.05 | 87.83 ± 9.26 | 115.50 ± 4.09 |
Di-esterified xanthophylls (µg ZDE/g) | 1832.74 ± 29.80 | 937.12 ± 8.55 | 1079.37 ± 66.37 | 56.93 ± 3.21 | 294.17 ± 1.01 |
violaxanthin dimyristate | 445.37 ± 13.30 | 74.02 ± 2.28 | 85.98 ± 0.57 | 15.52 ± 0.60 | 23.51 ± 0.09 |
antheraxanthin dilaurate | - | - | - | - | 33.84 ± 0.52 |
lutein laurate myristate | 174.95 ± 5.89 | 317.80 ± 0.54 | 97.27 ± 5.21 | 24.57 ± 2.09 | 129.09 ± 1.40 |
Meat | Energy Kcal (kJ) | Protein g | Carbohydrates (Sugars) g | Fat (Saturated) g | Fiber g | Salt g |
---|---|---|---|---|---|---|
Chicken | 128 (538) | 21 | <0.5 | 4.9 (1.5) | 0 | 0.35 |
Beef | 275 (1138) | 17.3 | 0 | 22.8 (11.1) | 0 | 1.6 |
100% | 70% | 50% | ||||
---|---|---|---|---|---|---|
Color Parameters | Without PPP | With 4% PPP | Without PPP | With 4% PPP | Without PPP | With 4% PPP |
L* | 52.73 ± 0.02 | 45.22 ± 0.02 | 46.18 ± 0.01 | 39.35 ± 0.01 | 43.41 ± 0.02 | 41.51 ± 0.01 |
a* | 11.81 ± 0.03 | 14.17 ± 0.02 | 18.48 ± 0.02 | 22.48 ± 0.02 | 20.12 ± 0.03 | 21.62 ± 0.02 |
b* | 17.19 ± 0.04 | 25.29 ± 0.03 | 14.73 ± 0.04 | 32.60 ± 0.02 | 11.40 ± 0.01 | 34.29 ± 0.01 |
C* | 20.86 ± 0.01 | 28.99 ± 0.01 | 23.63 ± 0.02 | 39.60 ± 0.01 | 23.13 ± 0.02 | 40.54 ± 0.02 |
H* | 55.51 ± 0.03 | 60.74 ± 0.03 | 38.56 ± 0.01 | 55.41 ± 0.02 | 29.54 ± 0.01 | 57.77 ± 0.01 |
100% | 70% | 50% | |
---|---|---|---|
T0 | 0.989 ± 0.003 | 0.992 ± 0.002 | 0.996 ± 0.003 |
T24 | 0.981 ± 0.004 | 0.989 ± 0.005 | 0.993 ± 0.001 |
T48 | 0.967 ± 0.002 | 0.987 ± 0.005 | 0.990 ± 0.001 |
T96 | 0.956 ± 0.002 | 0.973 ± 0.002 | 0.987 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinna, N.; Ianni, F.; Codini, M.; Cenci-Goga, B.T.; Misuraca, M.; Costanzi, E.; Cossignani, L.; Blasi, F. Development of Value-Added Chicken Burgers by Adding Pumpkin Peel Powder as a Sustainable Ingredient. Antioxidants 2025, 14, 648. https://doi.org/10.3390/antiox14060648
Pinna N, Ianni F, Codini M, Cenci-Goga BT, Misuraca M, Costanzi E, Cossignani L, Blasi F. Development of Value-Added Chicken Burgers by Adding Pumpkin Peel Powder as a Sustainable Ingredient. Antioxidants. 2025; 14(6):648. https://doi.org/10.3390/antiox14060648
Chicago/Turabian StylePinna, Nicola, Federica Ianni, Michela Codini, Beniamino Terzo Cenci-Goga, Marco Misuraca, Egidia Costanzi, Lina Cossignani, and Francesca Blasi. 2025. "Development of Value-Added Chicken Burgers by Adding Pumpkin Peel Powder as a Sustainable Ingredient" Antioxidants 14, no. 6: 648. https://doi.org/10.3390/antiox14060648
APA StylePinna, N., Ianni, F., Codini, M., Cenci-Goga, B. T., Misuraca, M., Costanzi, E., Cossignani, L., & Blasi, F. (2025). Development of Value-Added Chicken Burgers by Adding Pumpkin Peel Powder as a Sustainable Ingredient. Antioxidants, 14(6), 648. https://doi.org/10.3390/antiox14060648