Antibacterial Properties, Arabinogalactan Proteins, and Bioactivities of New Zealand Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Broth Assay
2.2.1. Bacterial Strains and Media
2.2.2. Bacterial Culture
2.3. Growth Inhibition Assay
2.4. Radial Gel Diffusion Assay
2.5. Ferric Reducing Antioxidant Power Assay (FRAP)
2.6. Cupric Ion Reducing Antioxidant Capacity (CUPRAC) Assay
2.7. Determination of Radical Scavenging Capacity Against DPPH
2.8. Folin–Ciocalteau Total Phenolic Content (TPC) Assay
2.9. Total Flavonoid Content
2.10. Vitamin C Analysis
2.11. Polyphenol Analysis Using Liquid Chromatography-Mass Spectrometry
2.12. Data Analysis
3. Results and Discussion
3.1. Antibacterial Effects of Honey
3.2. Bacterial Growth Curves
3.3. Arabinogalactan Proteins in Honey Using the Radial Gel Diffusion Technique
3.4. Antioxidant Activities, TPC and Total Flavonoid Content (TFC)
3.5. Vitamin C Content
3.6. PLS-DA Analysis of Antioxidants, Total Phenolic, Total Flavonoid, Ascorbic and Vitamin C in Honey Samples
3.7. Polyphenol Analysis of Honeys Using LC-MS
3.8. PLS-DA Analysis of Phenolic Content in Honey Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Zaheen, Z.; Yatoo, A.M.; Ali, S.; Ali, M.N.; Majid, S.; Rasool, S.; Rashid, S.M.; Ahmad, S.B.; Mir, M.u.R.; Zehra, U. Honey: Types, composition and antimicrobial mechanisms. Ther. Appl. Honey Its Phytochem. 2020, 1, 193–214. [Google Scholar]
- Al-Sayaghi, A.M.; Al-Kabsi, A.M.; Abduh, M.S.; Saghir, S.A.M.; Alshawsh, M.A. Antibacterial mechanism of action of two types of honey against Escherichia coli through interfering with bacterial membrane permeability, inhibiting proteins, and inducing bacterial DNA damage. Antibiotics 2022, 11, 1182. [Google Scholar] [CrossRef]
- Allen, K.L.; Molan, P.C.; Reid, G. A survey of the antibacterial activity of some New Zealand honeys. J. Pharm. Pharmacol. 1991, 43, 817–822. [Google Scholar] [CrossRef]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar]
- Robson, V.; Dodd, S.; Thomas, S. Standardized antibacterial honey (Medihoney™) with standard therapy in wound care: Randomized clinical trial. J. Adv. Nurs. 2009, 65, 565–575. [Google Scholar] [CrossRef]
- Brudzynski, K.; Lannigan, R. Mechanism of Honey Bacteriostatic Action Against MRSA and VRE Involves Hydroxyl Radicals Generated from Honey’s Hydrogen Peroxide. Front. Microbiol. 2012, 3, 36. [Google Scholar] [CrossRef]
- Girma, A.; Seo, W.; She, R.C. Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE 2019, 14, e0224495. [Google Scholar] [CrossRef]
- Smallfield, B.M.; Joyce, N.I.; van Klink, J.W. Developmental and compositional changes in Leptospermum scoparium nectar and their relevance to mānuka honey bioactives and markers. N. Z. J. Bot. 2018, 56, 183–197. [Google Scholar] [CrossRef]
- Molan, P.C. An Explanation of Why the MGO Level in Manuka Honey Does Not Show the Antibacterial Activity. 2008. Available online: https://researchcommons.waikato.ac.nz/entities/publication/ba6a79f8-a4b5-4e6c-8cb8-b762a13faba6 (accessed on 16 March 2025).
- Brady, N.; Molan, P.; Bang, L. A survey of non-manuka New Zealand honeys for antibacterial and antifungal activities. J. Apic. Res. 2004, 43, 47–52. [Google Scholar] [CrossRef]
- Hromadová, D.; Soukup, A.; Tylová, E. Arabinogalactan Proteins in Plant Roots–An Update on Possible Functions. Front. Plant Sci. 2021, 12, 674010. [Google Scholar] [CrossRef] [PubMed]
- Majtan, J. Honey: An immunomodulator in wound healing. Wound Repair Regen. 2014, 22, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Gannabathula, S.; Krissansen, G.W.; Skinner, M.; Steinhorn, G.; Schlothauer, R. Honeybee apisimin and plant arabinogalactans in honey costimulate monocytes. Food Chem. 2015, 168, 34–40. [Google Scholar] [CrossRef]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Determination of Antioxidant and Antibacterial Activities of Honey-Loaded Topical Formulations: A Focus on Western Australian Honeys. Appl. Sci. 2023, 13, 7440. [Google Scholar] [CrossRef]
- Afrin, S.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Bompadre, S.; Quiles, J.L.; Sanna, G.; Spano, N.; Giampieri, F.; Battino, M. Strawberry-tree honey induces growth inhibition of human colon cancer cells and increases ROS generation: A comparison with Manuka honey. Int. J. Mol. Sci. 2017, 18, 613. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Kłębukowska, L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Chessum, K.J.; Chen, T.; Hamid, N.; Kam, R. A comprehensive chemical analysis of New Zealand honeydew honey. Food Res. Int. 2022, 157, 111436. [Google Scholar] [CrossRef]
- Deadman, B.J. The Flavonoid Profile of New Zealand Manuka Honey. Ph.D. Thesis, The University of Waikato, Hamilton, New Zealand, 2009. [Google Scholar]
- Chan, C.W.; Deadman, B.J.; Manley-Harris, M.; Wilkins, A.L.; Alber, D.G.; Harry, E. Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole. Food Chem. 2013, 141, 1772–1781. [Google Scholar] [CrossRef]
- Yao, L.; Datta, N.; Tomás-Barberán, F.A.; Ferreres, F.; Martos, I.; Singanusong, R. Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chem. 2003, 81, 159–168. [Google Scholar] [CrossRef]
- Weston, R.J.; Mitchell, K.R.; Allen, K.L. Antibacterial phenolic components of New Zealand manuka honey. Food Chem. 1999, 64, 295–301. [Google Scholar] [CrossRef]
- Weston, R.J.; Brocklebank, L.K.; Lu, Y. Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem. 2000, 70, 427–435. [Google Scholar] [CrossRef]
- Saltveit, M.E. Synthesis and metabolism of phenolic compounds. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 115–124. [Google Scholar]
- Ayoub, W.S.; Zahoor, I.; Dar, A.H.; Farooq, S.; Mir, T.A.; Ganaie, T.A.; Srivastava, S.; Pandey, V.K.; Altaf, A. Exploiting the polyphenolic potential of honey in the prevention of chronic diseases. Food Chem. Adv. 2023, 3, 100373. [Google Scholar] [CrossRef]
- Baek, Y.; Kim, Y.J.; Baik, M.-Y.; Kim, D.-O.; Lee, H. Total phenolic contents and antioxidant activities of Korean domestic honey from different floral sources. Food Sci. Biotechnol. 2015, 24, 1453–1457. [Google Scholar] [CrossRef]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Olas, B. Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients 2020, 12, 283. [Google Scholar] [CrossRef]
- Venugopal, S.; Devarajan, S. Estimation of total flavonoids, phenols and antioxidant activity of local and New Zealand manuka honey. J. Pharm. Res. 2011, 4, 464–466. [Google Scholar]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, M.I.; Gan, S.H. Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Pullar, J.M.; Carr, A.C.; Vissers, M. The roles of vitamin C in skin health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef]
- León-Ruiz, V.; Vera, S.; González-Porto, A.V.; Andrés, M.P.S. Vitamin C and sugar levels as simple markers for discriminating Spanish honey sources. J. Food Sci. 2011, 76, C356–C361. [Google Scholar] [CrossRef]
- Bahar, S.; Korkmaz, S.; Korkmaz, B.I.O. Colour and vitamin C equivalent antioxidant capacity of honey from different origins in Turkey. ACTA Apic. Bras. 2022, 10, e9649. [Google Scholar] [CrossRef]
- Shahar, B.; Indira, A.; Santosh, O.; Dolma, N.; Chongtham, N. Nutritional composition, antioxidant activity and characterization of bioactive compounds from Thymus serpyllum L.: An underexploited wild aromatic plant. Meas. Food 2023, 10, 100092. [Google Scholar] [CrossRef]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Eddie Tan, T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Carter, D.A.; Turnbull, L.; Rosendale, D.; Hedderley, D.; Stephens, J.; Gannabathula, S.; Steinhorn, G.; Schlothauer, R.C.; Whitchurch, C.B. The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS ONE 2013, 8, e55898. [Google Scholar] [CrossRef]
- Gannabathula, S.; Skinner, M.A.; Rosendale, D.; Greenwood, J.M.; Mutukumira, A.N.; Steinhorn, G.; Stephens, J.; Krissansen, G.W.; Schlothauer, R.C. Arabinogalactan proteins contribute to the immunostimulatory properties of New Zealand honeys. Immunopharmacol. Immunotoxicol. 2012, 34, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Van Holst, G.-J.; Clarke, A.E. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal. Biochem. 1985, 148, 446–450. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef]
- Sun, C.; Tan, H.; Zhang, Y.; Zhang, H. Phenolics and abscisic acid identified in acacia honey comparing different SPE cartridges coupled with HPLC-PDA. J. Food Compos. Anal. 2016, 53, 91–101. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Thakur, V.; Brar, S.K. Antibacterial efficacy of raw and processed honey. Biotechnol. Res. Int. 2011, 2011, 917505. [Google Scholar] [CrossRef]
- Rabie, E.; Serem, J.C.; Oberholzer, H.M.; Gaspar, A.R.M.; Bester, M.J. How methylglyoxal kills bacteria: An ultrastructural study. Ultrastruct. Pathol. 2016, 40, 107–111. [Google Scholar] [CrossRef]
- Mežnarić, S.; Brčić Karačonji, I.; Crnković, G.; Lesar, A.; Pavlešić, T.; Vučković, D.; Gobin, I. Combined Inhibitory Effect of Fir (Abies alba Mill.) Honeydew Honey and Probiotic Bacteria Lactiplantibacillus plantarum on the Growth of Salmonella enterica Serotype Typhimurium. Antibiotics 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Ustunol, Z.; Gandhi, H. Growth and viability of commercial Bifidobacterium spp. in honey-sweetened skim milk. J. Food Prot. 2001, 64, 1775–1779. [Google Scholar] [CrossRef]
- Shamala, T.; Shri Jyothi, Y.; Saibaba, P. Stimulatory effect of honey on multiplication of lactic acid bacteria under in vitro and in vivo conditions. Lett. Appl. Microbiol. 2000, 30, 453–455. [Google Scholar] [CrossRef]
- Pentoś, K.; Łuczycka, D.; Oszmiański, J.; Lachowicz, S.; Pasternak, G. Polish honey as a source of antioxidants—A comparison with Manuka honey. J. Apic. Res. 2020, 59, 939–945. [Google Scholar] [CrossRef]
- Fernández-Estellé, M.; Hernández-González, V.; Saurina, J.; Núñez, O.; Sentellas, S. Characterization and classification of Spanish honeydew and blossom honeys based on their antioxidant capacity. Antioxidants 2023, 12, 495. [Google Scholar] [CrossRef]
- Morroni, G.; Alvarez-Suarez, J.M.; Brenciani, A.; Simoni, S.; Fioriti, S.; Pugnaloni, A.; Giampieri, F.; Mazzoni, L.; Gasparrini, M.; Marini, E. Comparison of the antimicrobial activities of four honeys from three countries (New Zealand, Cuba, and Kenya). Front. Microbiol. 2018, 9, 382109. [Google Scholar] [CrossRef]
- Viteri, R.; Zacconi, F.; Montenegro, G.; Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 2021, 86, 1552–1582. [Google Scholar] [CrossRef]
- Roongpet, T.; Anothai, T.; Chuleeporn, S.; Bundit, T.; Pattaramart, P. Comparison of antioxidant contents of Thai honeys to manuka honey. Malays. J. Nutr. 2016, 22, 413. [Google Scholar]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Boukraâ, L.; Bellik, Y.; Abdellah, F.; Bakhotmah, B.A.; Kolayli, S.; Sahin, H. Evaluation of the antioxidant activity of three varieties of honey from different botanical and geographical origins. Glob. J. Health Sci. 2012, 4, 191. [Google Scholar] [CrossRef] [PubMed]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Mohamad, N.S.; Pathmanathan, S.G.; Ismail, Z.; Rashid, Z.Z.; Mohamed, N.A. In vitro antioxidant and antimicrobial evaluation of Malaysian Tualang honey. Int. J. Antimicrob. Agents 2017, 50, S123. [Google Scholar]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Benlyas, M.; Alem, C.; Filali-Zegzouti, Y. Evaluation of antioxidant, antibacterial and antifungal activities of eleven monofloral honey samples collected from Morocco. J. Chem. Pharm. Res. 2016, 8, 299–306. [Google Scholar]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Romeo, R.; Bruno, A.D.; Piscopo, A.; Medina, E.; Ramírez, E.; Brenes, M.; Poiana, M. Effects of phenolic enrichment on vitamin C and antioxidant activity of commercial orange juice. Braz. J. Food Technol. 2020, 23, e2019130. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The chemistry behind the folin–ciocalteu method for the estimation of (poly) phenol content in food: Total phenolic intake in a mediterranean dietary pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- González, I.; Cao, K.-A.L.; Davis, M.J.; Déjean, S. Visualising associations between paired ‘omics’ data sets. BioData Min. 2012, 5, 19. [Google Scholar] [CrossRef]
- CaliŃski, T. Dendrogram. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
Bacteria | E. coli | B. subtilis | S. typhimurium | E. faecalis | P. aeruginosa | S. epidermidis | S. aureus | L. plantarum | |
---|---|---|---|---|---|---|---|---|---|
Clover Honey | 25% | 0.143 c | 0.081 d | 0.088 d | 0.192 c | 0.755 c | 0.946 b | 0.297 c | 1.782 b |
12.50% | 0.213 c | 0.249 c | 0.141 bc | 0.339 ab | 1.702 b | 0.999 b | 0.842 b | 1.899 b | |
6.25% | 0.294 b | 0.400 a | 0.165 b | 0.317 b | 2.341 a | 1.596 a | 1.024 a | 2.037 ab | |
3.13% | 0.329 b | 0.330 b | 0.134 c | 0.295 b | 2.481 a | 1.657 a | 1.016 a | 1.977 ab | |
0% | 0.638 a | 0.288 bc | 0.221 a | 0.362 a | 1.673 b | 1.557 a | 0.832 b | 2.259 a | |
Mānuka Honey | 25% | 0.062 c | 0.046 c | 0.070 c | 0.166 c | 0.300 c | 0.322 c | 0.343 b | 0.770 b |
12.50% | 0.058 c | 0.062 c | 0.063 c | 0.137 c | 1.734 b | 0.757 b | 0.491 b | 2.003 a | |
6.25% | 0.264 b | 0.177 b | 0.080 bc | 0.244 b | 2.351 a | 1.387 a | 0.902 a | 1.957 a | |
3.13% | 0.305 b | 0.327 a | 0.098 b | 0.266 b | 2.244 a | 1.598 a | 0.929 a | 2.005 a | |
0% | 0.638 a | 0.288 a | 0.221 a | 0.362 a | 1.673 b | 1.557 a | 0.832 a | 2.259 a | |
Honeydew Honey | 25% | 0.149 d | 0.324 d | 0.081 d | 0.206 c | 1.244 c | 0.398 c | 0.351 b | 1.740 b |
12.50% | 0.289 c | 1.204 bc | 0.132 c | 0.281 b | 2.088 a | 1.249 b | 0.794 a | 1.843 b | |
6.25% | 0.675 a | 1.464 a | 0.139 bc | 0.301 b | 2.211 a | 1.669 a | 0.891 a | 1.972 b | |
3.13% | 0.410 b | 1.418 ab | 0.162 b | 0.274 b | 1.996 ab | 1.634 a | 0.821 a | 1.988 ab | |
0% | 0.723 a | 1.185 c | 0.221 a | 0.362 a | 1.673 b | 1.557 a | 0.891 a | 2.259 a | |
Pōhutukawa Honey | 25% | 0.165 c | 0.382 b | 0.081 b | 0.130 c | 0.499 b | 0.534 d | 0.466 c | 1.688 b |
12.50% | 0.268 b | 1.284 a | 0.136 b | 0.205 b | 1.598 a | 1.359 bc | 0.947 b | 1.847 ab | |
6.25% | 0.336 b | 1.299 a | 0.163 b | 0.196 b | 1.424 a | 1.584 ab | 1.047 b | 1.946 ab | |
3.13% | 0.344 b | 1.316 a | 0.186 b | 0.204 b | 1.399 a | 1.613 a | 1.267 a | 1.882 ab | |
0% | 0.723 a | 1.185 a | 1.396 a | 0.233 a | 1.422 a | 1.112 c | 1.095 b | 2.111 a | |
Kānuka Honey | 25% | 0.175 d | 0.096 c | 0.107 b | 0.143 d | 0.707 c | 0.688 c | 0.336 c | 1.553 b |
12.50% | 0.263 c | 0.074 c | 0.175 b | 0.209 c | 1.693 ab | 1.244 b | 0.795 b | 1.947 a | |
6.25% | 0.340 b | 0.361 a | 0.190 b | 0.255 a | 1.981 a | 1.073 b | 1.061 a | 1.940 a | |
3.13% | 0.370 b | 0.398 a | 0.173 b | 0.229 bc | 1.445 b | 1.665 a | 0.908 b | 1.991 a | |
0% | 0.638 a | 0.288 b | 1.396 a | 0.233 ab | 1.422 b | 1.112 b | 1.095 a | 2.111 a | |
Rewarewa Honey | 25% | 0.128 d | 0.088 c | 0.160 b | 0.166 c | 0.860 d | 0.903 c | 0.483 d | 2.050 a |
12.50% | 0.244 c | 0.320 ab | 0.155 b | 0.219 b | 1.853 a | 1.467 ab | 0.803 c | 2.098 a | |
6.25% | 0.305 bc | 0.326 ab | 0.180 b | 0.216 b | 1.706 ab | 1.677 a | 0.846 bc | 1.985 a | |
3.13% | 0.343 b | 0.352 a | 0.188 b | 0.258 a | 1.496 bc | 1.448 b | 0.969 ab | 1.975 a | |
0% | 0.638 a | 0.288 b | 1.396 a | 0.233 b | 1.422 c | 1.112 c | 1.095 a | 2.111 a | |
Kāmahi Honey | 25% | 0.167 d | 0.519 c | 0.129 b | 0.205 c | 0.739 c | 0.979 c | 0.612 d | 1.928 a |
12.50% | 0.284 c | 1.433 a | 0.167 b | 0.233 b | 1.874 a | 1.429 b | 0.794 c | 1.916 a | |
6.25% | 0.337 c | 1.427 a | 0.173 b | 0.226 bc | 1.684 ab | 1.597 ab | 0.900 bc | 1.959 a | |
3.13% | 0.428 b | 1.274 ab | 0.195 b | 0.258 a | 1.474 b | 1.727 a | 0.964 ab | 1.975 a | |
0% | 0.723 a | 1.185 b | 1.396 a | 0.233 b | 1.422 b | 1.112 c | 1.095 a | 2.111 a | |
Thyme Honey | 25% | 0.339 c | 0.291 c | 0.310 c | 0.186 c | 0.901 c | 0.656 c | 0.278 c | 1.753 b |
12.50% | 1.078 b | 1.028 a | 0.647 b | 0.246 b | 2.092 a | 1.526 ab | 0.688 b | 1.955 ab | |
6.25% | 1.282 a | 1.108 a | 0.872 a | 0.232 b | 1.797 a | 1.771 a | 0.804 b | 1.925 ab | |
3.13% | 1.317 a | 1.049 a | 0.878 a | 0.323 a | 1.490 b | 1.653 a | 0.948 a | 1.962 ab | |
0% | 0.999 b | 0.736 b | 0.604 b | 0.297 a | 1.548 b | 1.335 b | 0.964 a | 2.185 a | |
Artificial Honey | 25% | 0.657 b | 0.495 c | 0.899 a | 0.202 c | 1.193 b | 0.960 b | 0.916 c | 1.737 c |
12.50% | 0.317 d | 0.613 b | 0.740 b | 0.206 c | 1.787 a | 1.245 a | 1.064 bc | 2.017 bc | |
6.25% | 0.493 c | 0.637 ab | 0.816 ab | 0.273 b | 1.800 a | 1.286 a | 1.142 ab | 2.216 ab | |
3.13% | 0.565 bc | 0.725 a | 0.883 a | 0.341 a | 1.598 a | 1.305 a | 1.297 a | 2.381 a | |
0% | 0.999 a | 0.736 a | 0.604 c | 0.297 b | 1.548 a | 1.335 a | 0.964 bc | 2.185 ab |
Samples | AGPs (µg/gram) (Honey/Buffer 1:1) |
---|---|
Clover | 1198.754 de |
Mānuka | 1479.273 cd |
Honeydew | 1071.936 e |
Pōhutukawa | 3222.133 a |
Kānuka | 1588.035 bcd |
Rewarewa | 1824.695 bc |
Kāmahi | 1903.015 b |
Thyme | 1024.599 e |
Pr > F | <0.0001 |
Honey | CUPRAC Antioxidant Capacity (mg TEAC/kg Honey) | FRAP Antioxidant Capacity (mg TEAC/kg Honey) | DPPH· Antioxidant Capacity (mg TEAC/kg Honey) | TPC Content (mg GAE/kg Honey) | TFC Content (mg RUE/kg Honey) |
---|---|---|---|---|---|
Clover | 871 ± 3.29 d | 330 ± 8.81 g | 117 ± 1.04 f | 380 ± 5.57 h | 97 ± 1.33 g |
Mānuka | 908 ± 1.90 c | 648 ± 3.52 c | 252 ± 1.65 c | 726 ± 4.76 c | 192 ± 3.38 b |
Beech honeydew | 1264 ± 5.17 b | 753 ± 1.10 b | 377 ± 4.61 b | 809 ± 6.41 b | 235 ± 3.38 a |
Pohotukawa | 754 ± 8.08 e | 427 ± 6.10 f | 143 ± 0.52 e | 463 ± 7.49 f | 172 ± 2.88 d |
Kānuka | 745 ± 4.48 e | 516 ± 1.76 e | 175 ± 1.09 d | 558 ± 7.13 e | 186 ± 2.39 c |
Rewa-rewa | 905 ± 2.87 c | 543 ± 9.15 d | 244 ± 2.22 c | 652 ± 1.06 d | 163 ± 1.95 e |
Kāmahi | 540 ± 4.97 f | 345 ± 8.07 g | 133 ± 1.15 f | 398 ± 7.49 g | 101 ± 2.24 g |
Thyme | 1564 ± 5.17 a | 1731 ± 14.44 a | 664 ± 1.81 a | 1058 ± 8.39 a | 147 ± 2.88 f |
F value | 13,517.244 | 7914.448 | 2223.254 | 2762.378 | 885.258 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Honey | Total Vitamin C (mg/kg Honey) | Ascorbic Acid (mg/kg Honey) | DHA (mg/kg Honey) |
---|---|---|---|
Clover | Nd | Nd | Nd |
Mānuka | Nd | Nd | Nd |
Beech honeydew | 11 ± 0.55 | 11 ± 0.55 | Nd |
Pōhutukawa | Nd | Nd | Nd |
Kānuka | Nd | Nd | Nd |
Rewarewa | Nd | Nd | Nd |
Kāmahi | Nd | Nd | Nd |
Thyme | 425 ± 6.10 | 383 ± 3.41 | 42 |
F value | 14,250.871 | 37,860.581 | - |
p-value | <0.0001 | <0.0001 | - |
Quinic Acid | Gallic Acid | Hydroxybenzoic Acid | Caffeic Acid | p-Coumaric Acid | Rutin | Benzoic Acid | Luteolin | Quercetin | Kaempferol | Pinobanksin | Chrysin | Pinocembrin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clover | 0.933 bcd | 0.000 d | 2.865 bc | 0.730 a | 0.429 a | 0.023 d | 0.328 c | 0.536 cd | 0.107 a | 0.357 a | 2.627 a | 0.871 a | 8.200 a |
Mānuka | 0.725 bcd | 0.161 b | 3.386 b | 0.553 abc | 0.061 f | 0.023 d | 0.343 c | 3.671 a | 0.098 abc | 0.150 bc | 1.854 b | 0.868 a | 5.531 b |
Honeydew | 1.729 a | 0.088 c | 10.003 a | 0.520 bc | 0.144 de | 0.043 c | 0.653 b | 0.616 cd | 0.096 abc | 0.135 c | 1.766 b | 0.684 ab | 5.032 b |
Pōhutukawa | 0.538 d | 0.462 a | 2.243 cd | 0.622 abc | 0.241 c | 0.024 d | 0.147 d | 1.557 b | 0.103 ab | 0.166 bc | 1.956 ab | 0.567 bc | 4.726 b |
Kānuka | 0.632 cd | 0.000 d | 2.230 cd | 0.627 ab | 0.185 cd | 0.016 d | 0.248 cd | 0.934 c | 0.088 abc | 0.121 c | 2.033 ab | 0.657 ab | 5.588 b |
Rewarewa | 1.214 ab | 0.000 d | 1.790 cd | 0.438 cd | 0.148 de | 0.054 bc | 0.206 cd | 0.192 d | 0.075 abc | 0.139 bc | 2.014 ab | 0.554 bc | 4.712 b |
Kāmahi | 1.020 bcd | 0.089 c | 2.326 bcd | 0.584 abc | 0.102 ef | 0.072 a | 0.207 cd | 0.613 cd | 0.065 c | 0.129 c | 1.790 b | 0.540 bc | 5.268 b |
Thyme | 1.130 bc | 0.000 d | 1.494 d | 0.318 d | 0.328 b | 0.067 ab | 0.827 a | 0.661 c | 0.065 bc | 0.207 b | 1.531 b | 0.392 c | 3.504 b |
F value | 3.860 | 48.260 | 51.500 | 4.240 | 26.950 | 20.750 | 20.710 | 52.980 | 1.880 | 17.770 | 16.020 | 10.050 | 12.850 |
p-value | 0.010 | <0.0001 | <0.0001 | 0.007 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.136 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, E.M.; Gannabathula, S.; Lakshitha, R.; Liu, Y.; Kantono, K.; Hamid, N. Antibacterial Properties, Arabinogalactan Proteins, and Bioactivities of New Zealand Honey. Antioxidants 2025, 14, 375. https://doi.org/10.3390/antiox14040375
George EM, Gannabathula S, Lakshitha R, Liu Y, Kantono K, Hamid N. Antibacterial Properties, Arabinogalactan Proteins, and Bioactivities of New Zealand Honey. Antioxidants. 2025; 14(4):375. https://doi.org/10.3390/antiox14040375
Chicago/Turabian StyleGeorge, Emey M., Swapna Gannabathula, Rushan Lakshitha, Ye Liu, Kevin Kantono, and Nazimah Hamid. 2025. "Antibacterial Properties, Arabinogalactan Proteins, and Bioactivities of New Zealand Honey" Antioxidants 14, no. 4: 375. https://doi.org/10.3390/antiox14040375
APA StyleGeorge, E. M., Gannabathula, S., Lakshitha, R., Liu, Y., Kantono, K., & Hamid, N. (2025). Antibacterial Properties, Arabinogalactan Proteins, and Bioactivities of New Zealand Honey. Antioxidants, 14(4), 375. https://doi.org/10.3390/antiox14040375