Special Issue "Antibiotic Resistance Genes: Spread and Evolution"

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Mechanism and Evolution of Antibiotic Resistance".

Deadline for manuscript submissions: 31 March 2021.

Special Issue Editor

Dr. Elena Perrin
Website
Guest Editor
Department of Biology, University of Florence, Via Madonna del Piano 6,50019 Sesto Fiorentino (FI)
Interests: Antibiotic resistance;Evolution;Efflux pumps;RND;Burkholderia

Special Issue Information

Dear Colleagues,

An in-depth knowledge of the genes and the mechanisms involved in the development and spread of antibiotic resistance (AR) is fundamental to counteracting this phenomenon.

Some information is already available on the resistome; the collection of all AR genes and their precursors, and the recent developments in -omics technologies have greatly contributed to expand our knowledge on this topic. However, more information is needed in order to more efficiently fight the spread of AR, to prevent its development, and to try to reduce it when it is already present, in order to be able to restore, for example, the activity of existing antibiotics.

This Special Issue invites articles on AR genes and their spread and evolution, including but not limited to the following topics:

  • The evolution and spread of known mechanisms of AR and the emergence of new mechanisms;
  • Direct evolution experiments on AR development;
  • The connections between AR and physiology and cellular metabolism;
  • The identification of unconventional genes directly or indirectly involved in AR;
  • Studies on the AR fitness cost.

Dr. Elena Perrin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Antibiotic resistance genes
  • Mobile genetic element
  • Horizontal gene transfer
  • Mutation rate
  • Resistome

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessCommunication
Antimicrobial Resistance of Escherichia coli and Pseudomonas aeruginosa from Companion Birds
Antibiotics 2020, 9(11), 780; https://doi.org/10.3390/antibiotics9110780 - 06 Nov 2020
Abstract
Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and [...] Read more.
Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated. Full article
(This article belongs to the Special Issue Antibiotic Resistance Genes: Spread and Evolution)
Open AccessCommunication
First Report of an Escherichia coli Strain Carrying the Colistin Resistance Determinant mcr-1 from a Dog in South Korea
Antibiotics 2020, 9(11), 768; https://doi.org/10.3390/antibiotics9110768 - 02 Nov 2020
Abstract
We studied the presence of the mobile colistin resistance gene mcr-1 in Escherichia coli isolates recovered from fecal and urine samples of companion animals, that were collected from South Korea in 2018 and 2019. The mcr-1 gene was detected [...] Read more.
We studied the presence of the mobile colistin resistance gene mcr-1 in Escherichia coli isolates recovered from fecal and urine samples of companion animals, that were collected from South Korea in 2018 and 2019. The mcr-1 gene was detected in one colistin-resistant E. coli isolated from a diarrheic dog. The isolate exhibited additional resistance to multiple antimicrobials, including fluoroquinolones and third-generation cephalosporins. The mcr-1 carrying isolate belonged to ST160. The pulsed-field gel electrophoresis pattern of our strain differed from those ST160 E. coli strains previously identified from chickens in Korea. The mcr-1 gene was identified in the IncI2 plasmid. It was also transferred to E. coli J53 recipient strain, with a conjugation efficiency of 2.8 × 10−4. Average nucleotide identity analysis demonstrated that the mcr-1-carrying plasmid in this study was closely related to those from patients in Korea. To the best of our knowledge, this is the first report of mcr-1 carrying E. coli from a companion animal in South Korea. Our findings support One Health approach is necessary to prevent the dissemination of this high-risk gene. Full article
(This article belongs to the Special Issue Antibiotic Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

Open AccessArticle
Molecular Characterization and Comparative Genomics of IncQ-3 Plasmids Conferring Resistance to Various Antibiotics Isolated from a Wastewater Treatment Plant in Warsaw (Poland)
Antibiotics 2020, 9(9), 613; https://doi.org/10.3390/antibiotics9090613 - 17 Sep 2020
Cited by 1
Abstract
As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously [...] Read more.
As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) β-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes. Full article
(This article belongs to the Special Issue Antibiotic Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

Open AccessCommunication
Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolated from War-Injured Patients from the Eastern Ukraine
Antibiotics 2020, 9(9), 579; https://doi.org/10.3390/antibiotics9090579 - 05 Sep 2020
Abstract
Recently, a total of 32 carbapenem- and fluoroquinolone-resistant Acinetobacter baumannii (Ab) isolates was isolated from war-injured patients who were treated at German Bundeswehr Hospitals, and preliminarily typed by “DiversiLab” repetitive elements sequence-based (rep-) PCR. Core genome-based sequence typing was also used to provide [...] Read more.
Recently, a total of 32 carbapenem- and fluoroquinolone-resistant Acinetobacter baumannii (Ab) isolates was isolated from war-injured patients who were treated at German Bundeswehr Hospitals, and preliminarily typed by “DiversiLab” repetitive elements sequence-based (rep-) PCR. Core genome-based sequence typing was also used to provide more detailed epidemiological information. From the clusters observed by rep-PCR, selected Ab strains were subjected to Next Generation Sequencing (NGS) in order to compare them with international outbreak-associated Ab strains and to identify MLST (multi-locus sequence type) lineages, as well as to identify known resistance genes. Accordingly, NGS indicated higher diversity than rep-PCR, but also confirmed likely transmission events. The identified acquired carbapenem-resistant genes comprised blaOXA-23, blaOXA-72 and blaGES-12, as well as various other intrinsic and acquired resistance-associated genetic elements. All isolates clustered with the previously identified international clonal lineages IC1, IC2, IC6 and IC7, with corresponding Pasteur sequence types ST1, ST2, ST78 and ST25, respectively. In conclusion, the assessment confirmed a broad spectrum of resistance-associated genes in Ab isolated from war-injured patients from the Eastern Ukraine, and provided the first insights into locally abundant clonal lineages. Full article
(This article belongs to the Special Issue Antibiotic Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

Open AccessArticle
Involvement of hpap2 and dgkA Genes in Colistin Resistance Mediated by mcr Determinants
Antibiotics 2020, 9(9), 531; https://doi.org/10.3390/antibiotics9090531 - 22 Aug 2020
Cited by 1
Abstract
Plasmid-mediated colistin resistance (mcr) determinants are challenging the efficacy of polymyxins against Gram-negative pathogens. Among 10 mcr genes described so far, the major determinants mcr-1 and mcr-3 are found closely linked to hpap2 or dgkA genes, encoding a hypothetical phosphatidic acid [...] Read more.
Plasmid-mediated colistin resistance (mcr) determinants are challenging the efficacy of polymyxins against Gram-negative pathogens. Among 10 mcr genes described so far, the major determinants mcr-1 and mcr-3 are found closely linked to hpap2 or dgkA genes, encoding a hypothetical phosphatidic acid phosphatase of type 2 (PAP2) and a diacylglycerol kinase, respectively, whose functions are still unknown. In this study, mcr-1, mcr-1–hpap2, mcr-3, and mcr-3–dgkA were expressed in Escherichia coli, and recombinant strains were analyzed to detect antimicrobial susceptibility and changes in the expression of genes involved in phospholipid metabolism. The mcr-1 or mcr-3 single genes were enough to drive growth on colistin selective media, although co-expression of linked genes conferred maximal antibiotic resistance. Expression of mcr determinants downregulated endogenous genes involved in lipopolysaccharide (LPS) modification or phospholipid recycling, although to different extents of repression: strong for arnB, ybjG, and pmrR; medium for eptA, lpxT, and dgkA; small for bacA and pgpB. Four of these genes (bacA, lpxT, pgpB, and ybjG) encode undecaprenyl pyrophosphate (UPP) phosphatases. In these conditions, cells presented resistance against bacitracin, an antibiotic that sequesters UPP from PAP2 enzymes. The hpap2 and dgkA genes might play a role in colistin resistance by compensating for phospholipid metabolism functions altered during LPS modification by colistin resistance determinants. Full article
(This article belongs to the Special Issue Antibiotic Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

Back to TopTop