Microbiome and Resistome in Companion Animals and at the Animal–Human Interface

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Companion Animals".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 2835

Special Issue Editors


E-Mail Website
Guest Editor
Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile
Interests: clinical microbiology; microbiome; microbiota; antibiotic resistance; one health

E-Mail Website
Guest Editor
Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8940000, Chile
Interests: clinical microbiology; antibiotic resistance; resistant genes; one health

Special Issue Information

Dear Colleagues,

Due to the massive sequencing of the 16S rRNA gene, we have gained knowledge of the microbiome in domestic animals from different anatomical sites, and the role it plays in health and disease states. In recent years, it has been recognized that pets and their owners share a percentage of this microbiome due to the closeness between them.

The focus of this Special Issue is the microbiome and resistome in companion animals and their relationship with the animal–human interface.

We are seeking studies that:

  • Consider microbiome studies in companion animals in states of health and disease, associated or not with their functionality, metabolome or other aspects.
  • Involve antibiotic resistance gene clusters or resistomes present in companion animals.

Additionally, the need for interdisciplinary group collaboration will allow us to receive studies that involve the transfer dynamics of microbiomes and/or resistomes in the companion animal–human interface, or vice versa.

Dr. Pamela Thomson
Dr. Patricia C. García
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbiome
  • resistome
  • companion animals
  • pet animals
  • companion animal–human interface
  • one health

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 1438 KiB  
Article
Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy
by David Díaz-Regañón, Mercedes García-Sancho, Alejandra Villaescusa, Ángel Sainz, Beatriz Agulla, Mariana Reyes-Prieto, Antonio Rodríguez-Bertos and Fernando Rodríguez-Franco
Animals 2023, 13(3), 326; https://doi.org/10.3390/ani13030326 - 17 Jan 2023
Cited by 7 | Viewed by 2349
Abstract
Canine chronic inflammatory enteropathy implicates multifactorial pathogenesis where immunological dysregulation and gut microbiota changes have a central role. Most sequencing-based taxonomic studies have been focused on the fecal microbiota. However, the analysis of these samples does not provide complete information regarding the composition [...] Read more.
Canine chronic inflammatory enteropathy implicates multifactorial pathogenesis where immunological dysregulation and gut microbiota changes have a central role. Most sequencing-based taxonomic studies have been focused on the fecal microbiota. However, the analysis of these samples does not provide complete information regarding the composition of the small intestine affected by this canine disease. Therefore, in this study, we aimed to characterize the intestinal bacterial microbiota in dogs with inflammatory bowel disease (IBD) (n = 34) by means of duodenal biopsies and fecal samples collected at the time of the diagnosis and to compare those to a group of healthy dogs (n = 12) using the 16S ribosomal RNA (16S rRNA) gene-targeted sequencing (Illumina MiSeq platform). Our study showed that IBD dogs presented differences in the fecal bacterial communities when compared with healthy dogs, with a lower relative abundance of Prevotellaceae (p = 0.005), Prevotella (p = 0.002), and Prevotellaceae Ga6A1 group (0.006); Erysipelotrichales (p = 0.019), Candidatus Stoquefichus (p < 0.001), Erysipelotrichaceae (p = 0.011), and Allobaculum (p = 0.003); Lachnospiraceae NK4A136 group (p = 0.015), Sellimonas (p = 0.042), Oscillospirales (p = 0.037), Oscillospiraceae UCG–005 (p < 0.001), Faecalibacterium (p = 0.028), and Fournierella (p = 0.034); Acidaminococcales, Acidaminococcaceae, and Phascolarctobacterium (p = 0.001); Aeromonadales (p = 0.026), Succinivibrionaceae (p = 0.037), and Succinivibrio (p = 0.031). On the other hand, a higher relative abundance of Enterococcaceae (Enterococcus; p = 0.003), Streptococcaceae (Streptococcus, p = 0.021), Enterobacterales (p = 0.027), Enterobacteriaceae (p = 0.008), and Escherichia–Shigella (p = 0.011) was detected. Moreover, when evaluating α–diversity, the dogs with IBD showed lower diversity in terms of richness and abundance of species (observed species [p = 0.031] and Shannon index [p = 0.039]). Furthermore, fecal microbiota in dogs with IBD was significantly different from healthy dogs (p = 0.006). However, only a few taxa relative abundance shifts (lower Rubrobacteria, Rubrobacterales, Rubrobacteriaceae, and Rubrobacter [p = 0.002]; Cyanobacteria [p = 0.010], Vampirivibrionia, Obscuribacterales, and Obscuribacteraceae [p = 0.005]; Neisseriaceae [p = 0.004] and Conchiformibius [p = 0.003]) were observed when assessing duodenal-associated microbiota of dogs with IBD. Thus, even if the bowel inflammation mainly affects the small intestine in the IBD-affected dogs of the study, fecal specimens may constitute a better sample due not only to their easy availability but also in terms of searching for bacterial taxa as biomarkers for canine IBD. The use of different diets in the study can also have a partial influence on the microbiota composition. Future studies encompassing multi-omics approaches should evaluate the functionality in both levels to unravel the pathophysiology of canine IBD. Full article
Show Figures

Figure 1

Back to TopTop