Alternative Feedstuffs, Functional Foods and Feed Additives for Aquatic Organisms

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Aquatic Animals".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 33773

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Nutrition of Aquatic Organisms (LANOA), Institute of Oceanography (IO), Federal University of Rio Grande (FURG), Rio Grande 96203-000, RS, Brazil
Interests: aquaculture; marine biotechnology; dietary supplements; fish nutrition; fish biology; shrimp nutrition; body composition; marine aquaculture; aquaculture fisheries; aquatic science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Functional Biochemistry, Institute of Biological Sciences (ICB), Federal University of Rio Grande—FURG, Rio Grande 96203-000, RS, Brazil
Interests: marine biotechnology; dietary supplements; shrimp nutrition; shrimp physiology; antioxidants; chemo-protectans; nanotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Aquaculture production is increasing worldwide, leading to greater demand for highly nutritional feed. The increase in feed production has resulted in a greater need for agricultural feedstuffs, which are also used by other animal production sectors. Fisheries are a source of aquaculture feedstuff since they provide fish meal and fish oil. Competition among production chains for these goods, as well as environmental pressures causing increased prices, has stimulated the search for new feedstuff for the manufacture of aquaculture diets that will improve the sustainability and profitability of this activity. This Special Issue welcomes research articles that evaluate the use of new ingredients for the manufacture of feed and their impacts on the zootechnical performance, physiology, biochemistry, and morphology of aquatic organisms in captivity. Studies in multidisciplinary fields, such as physiology, nutrition, genetics, immunology and diseases, antioxidant and oxidative stress responses, husbandry and management, and economics, are welcome.

Dr. Marcelo Borges Tesser
Dr. José María Monserrat
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • alternative feedstuffs
  • aquaculture
  • nutrition
  • physiology
  • fishmeal substitution
  • fish oil replacement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1659 KiB  
Article
Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp (Penaeus vannamei)
by Thaise Dalferth Zancan, José María Monserrat, Robson Matheus Marreiro Gomes, Vilásia Guimarães Martins, Wilson Wasielesky, Jr. and Marcelo Borges Tesser
Animals 2023, 13(22), 3480; https://doi.org/10.3390/ani13223480 - 11 Nov 2023
Cited by 1 | Viewed by 1251
Abstract
A 60-day feeding trial was conducted to evaluate the effects of including pumpkin seeds and pomace in the diets of Pacific white shrimp Penaeus vannamei, and the effects of these supplements on growth performance, body composition, and total polyphenol, flavonoid and carotenoid [...] Read more.
A 60-day feeding trial was conducted to evaluate the effects of including pumpkin seeds and pomace in the diets of Pacific white shrimp Penaeus vannamei, and the effects of these supplements on growth performance, body composition, and total polyphenol, flavonoid and carotenoid contents, as well as on total antioxidant activity, and body color parameters. Five diets were evaluated: pumpkin seeds (PS) at 50 and 100 g·kg−1, pumpkin pomace (PP) at 50 and 100 g·kg−1, and a control treatment. Pacific white shrimp (P. vannamei) juveniles (0.60 ± 0.01 g) were stocked in 15 tanks (310 L), containing 30 shrimps per tank, and the treatments were randomly distributed in triplicate. At the end of the experiment, shrimps were euthanized, weighed, and dissected for further analyses. The inclusion of PS in the diets impaired growth performance, reduced the total flavonoid content and had a pro-oxidative effect on muscle. The inclusion of PP in the diets did not affect growth performance, improved the feed conversion ratio, increased the total flavonoid content in the diets and hepatopancreas, and improved the antioxidant activity of the feeds and shrimp muscle. The total carotenoid content of the feeds increased with the inclusion of PS or PP in the diets; however, the total carotenoid content of shrimp increased only in those fed PP diets. Shrimp fed with PS diets showed a yellowish color and higher saturation when fresh and a reddish color and yellow hue angle after cooking. Shrimp fed PP diets turned reddish and yellowish, both when fresh and after cooking. The inclusion of PS in P. vannamei diets is not recommended; however, PP can be included at 100 g·kg−1 without affecting the growth parameters. Further studies evaluating the inclusion of higher PP levels in shrimp diets are recommended. Full article
Show Figures

Figure 1

17 pages, 2961 KiB  
Article
Effects of Lyophilized Açaí (Euterpe oleracea) Supplementation on Oxidative Damage and Intestinal Histology in Juvenile Shrimp Penaeus vannamei Reared in Biofloc Systems
by Grecica Mariana Colombo, Robson Matheus Marreiro Gomes, Sonia Astrid Muñoz Buitrago, Juan Rafael Buitrago Ramírez, Alan Carvalho de Sousa Araujo, Fernando Pablo Silva Oliveira, Virgínia Fonseca Pedrosa, Luís Alberto Romano, Marcelo Tesser, Wilson Wasielesky and José María Monserrat
Animals 2023, 13(20), 3282; https://doi.org/10.3390/ani13203282 - 20 Oct 2023
Viewed by 1120
Abstract
The objective of this was to evaluate the ability of bioflocs to assimilate and transfer antioxidant compounds present in açaí Euterpe oleracea to juvenile Penaeus vannamei shrimp grown in a biofloc system. Juvenile shrimp were distributed into four treatment groups (control, 5, 20, [...] Read more.
The objective of this was to evaluate the ability of bioflocs to assimilate and transfer antioxidant compounds present in açaí Euterpe oleracea to juvenile Penaeus vannamei shrimp grown in a biofloc system. Juvenile shrimp were distributed into four treatment groups (control, 5, 20, and 80 mg açaí L−1), containing 31 shrimps/tank (90 L), and cultivated for 30 days. Every 24 h throughout the experimental period, the respective açaí concentrations were added directly to the cultivation water. The bioflocs and hepatopancreas lost their antioxidant capacity with increasing concentrations of açaí; however, lipid damage was mitigated after treatment with 20 mg of açaí L−1 (p < 0.05). The application of 20 mg açaí L−1 increased the mean height and area of the middle intestinal microvilli (p < 0.05). Mortality and protein and lipid damage in shrimp muscle increased with daily administration of 80 mg açaí L−1 (p < 0.05). It is concluded that the bioflocs were able to assimilate the antioxidants present in açaí and transfer them to the shrimp, and the administration of 20 mg açaí L−1 presented the best performance, demonstrating the possibility of its application in the cultivation of P. vannamei in a biofloc system. Full article
Show Figures

Graphical abstract

20 pages, 4094 KiB  
Article
Effects of Replacing Soybean Meal Protein with Chlorella vulgaris Powder on the Growth and Intestinal Health of Grass Carp (Ctenopharyngodon idella)
by Linlin Yang, Minglang Cai, Lei Zhong, Yong Shi, Shouqi Xie, Yi Hu and Junzhi Zhang
Animals 2023, 13(14), 2274; https://doi.org/10.3390/ani13142274 - 12 Jul 2023
Cited by 3 | Viewed by 1446
Abstract
Chlorella vulgaris (C. vulgaris) powder is a novel non-grain single-cell protein with enormous potential to be a protein source. However, it is poorly studied in aquatic animals. The purpose of the present study was to explore the optimum replacement ratio of [...] Read more.
Chlorella vulgaris (C. vulgaris) powder is a novel non-grain single-cell protein with enormous potential to be a protein source. However, it is poorly studied in aquatic animals. The purpose of the present study was to explore the optimum replacement ratio of C. vulgaris powder and the influence of the substitution of soybean meal with C. vulgaris on grass carp (Ctenopharyngodon idella) in terms of growth performance, intestinal integrity and the microbial community. Five isonitrogenous and isolipidic diets were formulated by replacing 0% (SM, containing 30% soybean meal), 25% (X25), 50% (X50), 75% (X75) and 100% (X100) soybean meal with C. vulgaris. The feeding trial period lasted 8 weeks. At the end of the experimental trial, the X50 group showed higher FW, WGR and PER than the SM group (p < 0.05). The feed conversion ratio (FCR) of the X50 group was significantly lower than that of the SM group (p < 0.05). The X50 group showed the highest value of the goblet cell number, intestinal amylase and trypsin activities when compared with the SM group (p < 0.05). Replacing 50% soybean meal with C. vulgaris improved the intestinal barrier integrity, as evidenced by upregulating zo-1, zo-2 and occluding transcript (p < 0.05), and alleviated oxidative stress by an increased SOD enzymatic activity and transcript level, probably mediated through the Nrf2-keap1 signaling pathway (p < 0.05). Meanwhile, the X50 group enhanced intestinal immunity, as manifested by increased ACP and LZM activities (p < 0.05), and downregulated the tlr-4, tlr-7, tlr-8 and il-6 through the tlr pathway (p < 0.05). The functionally predicting pathways related to the nitrate respiration and nitrogen respiration were observably activated in the X50 group (p < 0.05). The X50 group improved the biological barrier, as manifested by increased Firmicutes and Rhodobacter (p < 0.05). In conclusion, dietary C. vulgaris powder could promote the growth performance of grass carp by restoring intestinal morphology, increasing digestive enzyme activities, improving antioxidant properties and immunity and optimizing the microflora structure. A C. vulgaris powder replacement of 50% soybean meal was recommended as feed for grass carp. Full article
Show Figures

Figure 1

18 pages, 1744 KiB  
Article
Dietary Fishmeal Can Be Partially Replaced with Non-Grain Compound Proteins through Evaluating the Growth, Biochemical Indexes, and Muscle Quality in Marine Teleost Trachinotus ovatus
by Zeliang Su, Yongcai Ma, Fang Chen, Wenqiang An, Guanrong Zhang, Chao Xu, Dizhi Xie, Shuqi Wang and Yuanyou Li
Animals 2023, 13(10), 1704; https://doi.org/10.3390/ani13101704 - 21 May 2023
Cited by 3 | Viewed by 1839
Abstract
In the context of human food shortages, the incorporation of non-grain feedstuff in fish feed deserves more research attention. Here, the feasibility and appropriate ratio of non-grain compound protein (NGCP, containing bovine bone meal, dephenolized cottonseed protein, and blood cell meal) for dietary [...] Read more.
In the context of human food shortages, the incorporation of non-grain feedstuff in fish feed deserves more research attention. Here, the feasibility and appropriate ratio of non-grain compound protein (NGCP, containing bovine bone meal, dephenolized cottonseed protein, and blood cell meal) for dietary fishmeal (FM) replacement were explored in golden pompano (Trachinotus ovatus). Four isonitrogenous (45%) and isolipidic (12%) diets (Control, 25NGP, 50NGP, and 75NGP) were prepared. Control contained 24% FM, whereas the FM content of 25NGP, 50NGP, and 75NGP was 18%, 12%, and 6%, respectively, representing a 25%, 50%, and 75% replacement of FM in Control by NGCP. Juvenile golden pompano (initial weight: 9.71 ± 0.04 g) were fed the four diets for 65 days in sea cages. There was no significant difference between the 25NGP and Control groups in terms of weight gain, weight gain rate, and specific growth rate; contents of crude protein, crude lipid, moisture, and ash in muscle and whole fish; muscle textural properties including hardness, chewiness, gumminess, tenderness, springiness, and cohesiveness; and serum biochemical indexes including total protein, albumin, blood urea nitrogen, HDL cholesterol, total cholesterol, and triglycerides. However, the golden pompano in 50NGP and 75NGP experienced nutritional stress, and thus some indicators were negatively affected. In addition, compared to the Control group, the expression levels of genes related to protein metabolism (mtor, s6k1, and 4e-bp1) and lipid metabolism (pparγ, fas, srebp1, and acc1) of the 25NGP group showed no significant difference, but the 4e-bp1 and pparγ of the 75NGP group were significantly upregulated and downregulated, respectively (p < 0.05), which may explain the decline in fish growth performance and muscle quality after 75% FM was replaced by NGCP. The results suggest that at least 25% FM of Control can be replaced by NGCP, achieving a dietary FM content of as low as 18%; however, the replacement of more than 50% of the dietary FM negatively affects the growth and muscle quality of golden pompano. Full article
Show Figures

Figure 1

13 pages, 642 KiB  
Article
Digestibility of Conventional and Novel Dietary Lipids in Channel Catfish Ictalurus punctatus
by Andrew Maina, Rebecca Lochmann, Steven D. Rawles and Kurt Rosentrater
Animals 2023, 13(9), 1456; https://doi.org/10.3390/ani13091456 - 25 Apr 2023
Cited by 1 | Viewed by 1633
Abstract
Lipid and fatty acid digestibility is presumably high in Channel Catfish, but data is lacking. We determined the lipid and fatty acid digestibility of traditional and alternative dietary lipids in Channel Catfish to inform lipid choice for commercial diets. Six diets contained 4% [...] Read more.
Lipid and fatty acid digestibility is presumably high in Channel Catfish, but data is lacking. We determined the lipid and fatty acid digestibility of traditional and alternative dietary lipids in Channel Catfish to inform lipid choice for commercial diets. Six diets contained 4% of different lipids: soybean oil (SBO), soybean oil containing conjugated linoleic acids (CLA-SBO), catfish offal oil (COO), flaxseed oil (FXO), menhaden fish oil (MFO) and poultry fat (PF). Diets were fed to Channel Catfish (150–200 g) maintained at 26.5 °C in each of six 110 L aquaria. Six hours post-prandial, feces were collected for analysis. Total lipid, crude protein and fatty acids of lyophilized feces were analyzed, and apparent digestibility coefficients (ADCs) were calculated. ADCs of lipid, saturated and monounsaturated fatty acids, linoleic acid and protein digestibility were similar among diets. CLA isomers (cis-9, trans-11 (84.1%) and trans-10, cis-12 (90%)) in the CLA-SBO diet were highly digestible. Oleic acid digestibility was highest in the PF diet. ADC was high for α-linolenic acid in the FXO diet, and for arachidonic acid and n-3 LC-PUFA in the MFO diet. Overall, total lipid digestibility was high, but ADCs of individual fatty acids differed by source. Full article
Show Figures

Figure 1

17 pages, 3207 KiB  
Article
Survival, Growth Performance, and Hepatic Antioxidant and Lipid Profiles in Infected Rainbow Trout (Oncorhynchus mykiss) Fed a Diet Supplemented with Dihydroquercetin and Arabinogalactan
by Irina V. Sukhovskaya, Liudmila A. Lysenko, Natalia N. Fokina, Nadezhda P. Kantserova and Ekaterina V. Borvinskaya
Animals 2023, 13(8), 1345; https://doi.org/10.3390/ani13081345 - 14 Apr 2023
Cited by 4 | Viewed by 1845
Abstract
Natural feed supplements have been shown to improve fish viability, health, and growth, and the ability to withstand multiple stressors related to intensive cultivation. We assumed that a dietary mix of plant-origin substances, such as dihydroquercetin, a flavonoid with antioxidative, anti-inflammatory, and antimicrobial [...] Read more.
Natural feed supplements have been shown to improve fish viability, health, and growth, and the ability to withstand multiple stressors related to intensive cultivation. We assumed that a dietary mix of plant-origin substances, such as dihydroquercetin, a flavonoid with antioxidative, anti-inflammatory, and antimicrobial properties, and arabinogalactan, a polysaccharide with immunomodulating activity, would promote fish stress resistance and expected it to have a protective effect against infectious diseases. Farmed rainbow trout fish, Oncorhynchus mykiss, received either a standard diet or a diet supplemented with 25 mg/kg of dihydroquercetin and 50 mg/kg of arabinogalactan during a feeding season, from June to November. The fish in the control and experimental groups were sampled twice a month (eight samplings in total) for growth variable estimations and tissue sampling. The hepatic antioxidant status was assessed via the quantification of molecular antioxidants, such as reduced glutathione and alpha-tocopherol rates, as well as the enzyme activity rates of peroxidase, catalase, and glutathione-S-transferase. The lipid and fatty acid compositions of the feed and fish liver were analyzed using thin-layer and high-performance liquid chromatography. The viability, size, and biochemical indices of the fish responded to the growth physiology, environmental variables such as the dissolved oxygen content and water temperature, and sporadic factors. Due to an outbreak of a natural bacterial infection in the fish stock followed by antibiotic treatment, a higher mortality rate was observed in the fish that received a standard diet compared to those fed supplemented feed. In the postinfection period, reduced dietary 18:2n-6 and 18:3n-3 fatty acid assimilation contents were detected in the fish that received the standard diet in contrast to the supplemented diet. By the end of the feeding season, an impaired antioxidant response, including reduced glutathione S-transferase activity and glutathione content, and a shift in the composition of membrane lipids, such as sterols, 18:1n-7 fatty acid, and phospholipids, were also revealed in fish fed the standard diet. Dietary supplementation with plant-origin substances, such as dihydroquercetin and arabinogalactan, decreases lethality in fish stocks, presumably though the stimulation of natural resistance in farmed fish, thereby increasing the economic efficacy during fish production. From the sustainable aquaculture perspective, natural additives also diminish the anthropogenic transformation of aquaculture-bearing water bodies and their ecosystems. Full article
Show Figures

Figure 1

19 pages, 4181 KiB  
Article
Transcriptome Analysis Reveals the Immunoregulation of Replacing Fishmeal with Cottonseed Protein Concentrates on Litopenaeus vannamei
by Hongming Wang, Xin Hu, Jian Chen, Hang Yuan, Naijie Hu, Beiping Tan, Xiaohui Dong and Shuang Zhang
Animals 2023, 13(7), 1185; https://doi.org/10.3390/ani13071185 - 28 Mar 2023
Viewed by 1968
Abstract
Cottonseed protein concentrate (CPC) is a new non-food protein source with high crude protein, low price, and abundant resources, making it an ideal substitute for fishmeal. In this study, we investigated the effects of CPC re placing fishmeal on the immune response of [...] Read more.
Cottonseed protein concentrate (CPC) is a new non-food protein source with high crude protein, low price, and abundant resources, making it an ideal substitute for fishmeal. In this study, we investigated the effects of CPC re placing fishmeal on the immune response of Litopenaeus vannamei using transcriptome sequencing. L. vannamei (initial body weight: 0.42 ± 0.01 g) were fed four isonitrogenous and isolipid feeds for eight weeks, with CPC replacing fishmeal at 0% (control, FM), 15% (CPC15), 30% (CPC30), and 45% (CPC45), respectively. At the end of the feeding trial, the changes of the activities and expression of immune-related enzymes were consistent in L. vannamei in the CPC-containing group when compared with the FM group. Among them, the activities of ACP, PO, and LZM in the group whose diet was CPC30 were significantly higher than those in the FM group. Moreover, the activities of AKP, SOD, and CAT were significantly higher in the group containing CPC than in the FM group. Furthermore, all CPC groups had considerably lower MDA levels than the FM group. This suggests that the substitution of fishmeal with CPC leads to a significant immune response in L. vannamei. Compared with the FM group, transcriptome analysis identified 805 differentially expressed genes (DEGs) (484 down and 321 up), 694 (266 down and 383 up), and 902 (434 down and 468 up) in CPC15, CPC30, and CPC45, respectively. Among all DEGs, 121 DEGs were shared among different CPC-containing groups compared with the FM group. Most of these differential genes are involved in immune-related signaling pathways. The top 20 signaling pathways enriched for differential genes contained toxoplasmosis, pathogenic Escherichia coli infection, insulin resistance, and Toll and immune deficiency (IMD) pathways, in which NF-kappa-B inhibitor Cactus were involved. In addition, trend analysis comparison of the DEGs shared by the group with CPC in the diet and the FM group showed that Cactus genes were significantly down-regulated in the group with CPC in the diet and were lowest in the CPC30 group. Consistently, the expression of antimicrobial peptide genes was significantly higher in both diet-containing CPC groups than in the FM group. In conclusion, the moderate amount of CPC substituted for fishmeal may improve the immunity of L. vannamei by suppressing the expression of Cactus genes, thereby increasing the expression of antimicrobial peptide (AMP) genes. Full article
Show Figures

Figure 1

18 pages, 2751 KiB  
Article
Effects of Fishmeal Replacement by Clostridium Autoethanogenum Protein Meal on Cholesterol Bile Acid Metabolism, Antioxidant Capacity, Hepatic and Intestinal Health of Pearl Gentian Grouper (Epinephelus Fuscoguttatus ♀ × Epinephelus Lanceolatus ♂)
by Bocheng Huang, Menglin Shi, Aobo Pang, Beiping Tan and Shiwei Xie
Animals 2023, 13(6), 1090; https://doi.org/10.3390/ani13061090 - 18 Mar 2023
Cited by 7 | Viewed by 2191
Abstract
In this study, we present data from an eight-week growth trial with pearl gentian grouper fed either a reference diet (FM) with a fishmeal level of 50%, or test diet wherein 15% (CAP15), 30% (CAP30), 45% (CAP45), and 60% (CAP60) fishmeal was replaced [...] Read more.
In this study, we present data from an eight-week growth trial with pearl gentian grouper fed either a reference diet (FM) with a fishmeal level of 50%, or test diet wherein 15% (CAP15), 30% (CAP30), 45% (CAP45), and 60% (CAP60) fishmeal was replaced by Clostridium autoethanogenum protein meal (CAP). Results showed that the weight gain and daily feed intake ratio of CAP60 were significantly lower than the FM group. In the serum, compared to the FM group, the content of malondialdehyde (MDA), the activities of alanine aminotransferase in CAP60 and CAP45 groups, and acid phosphatase in the CAP60 group were significantly higher, while the content of total cholesterol in CAP60 and CAP45 groups was significantly lower. In the liver, compared to the control group, the content of MDA in the CAP60 group was significantly higher. 3-hydroxy-3-methylglutaryl coenzyme A reductase in CAP30 to CAP60 groups and farnesoid X receptor in CAP60 were significantly upregulated. In distal intestines, the activities of trypsin and superoxide dismutase of CAP30 to CAP60 groups were significantly lower than the FM group. In conclusion, for pearl gentian grouper, CAP could replace up to 45% of the fishmeal in the feed, while a 60% replacement level will affect cholesterol bile acid metabolism and health. Full article
Show Figures

Figure 1

20 pages, 3458 KiB  
Article
Effects of Dietary Alpha-Lipoic Acid on Growth Performance, Serum Biochemical Indexes, Liver Antioxidant Capacity and Transcriptome of Juvenile Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂)
by Guanghai Ou, Ruitao Xie, Jiansheng Huang, Jianpeng Huang, Zhenwei Wen, Yu Li, Xintao Jiang, Qian Ma and Gang Chen
Animals 2023, 13(5), 887; https://doi.org/10.3390/ani13050887 - 28 Feb 2023
Cited by 4 | Viewed by 2527
Abstract
We aimed to investigate the effects of dietary alpha-lipoic acid (α-LA) on the growth performance, serum biochemical indexes, liver morphology, antioxidant capacity, and transcriptome of juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Four experimental diets supplemented with 0 (SL0), [...] Read more.
We aimed to investigate the effects of dietary alpha-lipoic acid (α-LA) on the growth performance, serum biochemical indexes, liver morphology, antioxidant capacity, and transcriptome of juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Four experimental diets supplemented with 0 (SL0), 0.4 (L1), 0.6 (L2), and 1.2 (L3) g/kg α-LA were formulated and fed to three replicates of juvenile hybrid grouper (24.06 ± 0.15 g) for 56 d. The results indicated that dietary 0.4 and 0.6 g/kg α-LA significantly decreased the weight gain rate in juvenile hybrid groupers. Compared with SL0, the content of total protein in the serum of L1, L2, and L3 increased significantly, and alanine aminotransferase decreased significantly. The content of albumin in the serum of L3 increased significantly, and triglyceride, total cholesterol, and aspartate aminotransferase decreased significantly. In addition, the hepatocyte morphology in L1, L2, and L3 all showed varying degrees of improvement, and the activities of glutathione peroxidase and superoxide dismutase in the liver of L2 and L3 were significantly increased. A total of 42 differentially expressed genes were screened in the transcriptome data. KEGG showed that a total of 12 pathways were significantly enriched, including the pathway related to immune function and glucose homeostasis. The expression of genes (ifnk, prl4a1, prl3b1, and ctsl) related to immune were significantly up-regulated, and the expressions of gapdh and eno1 genes related to glucose homeostasis were significantly down-regulated and up-regulated, respectively. In summary, dietary supplementation of 0.4 and 0.6 g/kg α-LA inhibited the growth performance of juvenile hybrid groupers. A total of 1.2 g/kg α-LA could reduce the blood lipid level, improve hepatocyte damage, and increase the hepatic antioxidant enzyme activity. Dietary α-LA significantly affected the pathway related to immune function and glucose homeostasis. Full article
Show Figures

Figure 1

14 pages, 8921 KiB  
Article
Effects of the Replacement of Dietary Fish Meal with Poultry By-Product Meal on Growth and Intestinal Health of Chinese Soft-Shelled Turtle (Pelodiscus sinensis)
by Zongsheng Qiu, Qiyou Xu, Dazhang Xie, Jiantao Zhao, Fernando Y. Yamamoto, Hong Xu and Jianhua Zhao
Animals 2023, 13(5), 865; https://doi.org/10.3390/ani13050865 - 27 Feb 2023
Cited by 3 | Viewed by 2097
Abstract
To investigate the effect of poultry by-product meal (PBM) replacing fish meal on the growth and intestinal health of Chinese soft-shelled turtle (Pelodiscus sinensis). Four experimental diets were prepared. Fish meal was replaced by 0 (control group, PBM0), 5% (PBM5), 10% (PBM10), [...] Read more.
To investigate the effect of poultry by-product meal (PBM) replacing fish meal on the growth and intestinal health of Chinese soft-shelled turtle (Pelodiscus sinensis). Four experimental diets were prepared. Fish meal was replaced by 0 (control group, PBM0), 5% (PBM5), 10% (PBM10), and 15% (PBM15) PBM. Compared to the control group, final body weight, weight gain, and specific growth rate were significantly increased, while feed conversion rate decreased significantly in the PBM10 group (p < 0.05). The PBM15 group significantly increased the moisture content and significantly decreased the ash content of the turtles (p < 0.05). The PBM5 and PBM15 groups significantly decreased the whole-body crude lipid (p < 0.05). The serum glucose content increased significantly in the PBM10 group (p < 0.05). The liver malonaldehyde content significantly decreased in the PBM5 group and in the PBM10 group (p < 0.05). Liver glutamic-oxalacetic transaminase and intestinal pepsin activity were increased significantly in the PBM15 group (p < 0.05). The expression of the intestinal interleukin 10 (IL-10) gene was significantly down-regulated in the PBM10 group and the PBM15 group (p < 0.05), the expression of the intestinal interferon-γ (IFN-γ), interleukin-8 (IL-8), and liver toll-like receptor 4 (TLR4) and toll-like receptor 5 (TLR5) genes were significantly up-regulated in the PBM5 group (p < 0.05). In summary, poultry by-product meal can be used as a protein source to replace fish meal in turtle feed. Based on quadratic regression analysis, the optimal replacement ratio is 7.39%. Full article
Show Figures

Figure 1

19 pages, 2596 KiB  
Article
Dietary Use of Methionine Sources and Bacillus amyloliquefaciens CECT 5940 Influences Growth Performance, Hepatopancreatic Histology, Digestion, Immunity, and Digestive Microbiota of Litopenaeus vannamei Fed Reduced Fishmeal Diets
by Ramón Casillas-Hernández, Jose Reyes Gonzalez-Galaviz, Libia Zulema Rodriguez-Anaya, Juan Carlos Gil-Núñez and María del Carmen Rodríguez-Jaramillo
Animals 2023, 13(1), 43; https://doi.org/10.3390/ani13010043 - 22 Dec 2022
Cited by 4 | Viewed by 2172
Abstract
An 8-week feeding trial investigated the effect of Fishmeal (FM) replacement by soybean meal (SBM) and poultry by-product meal (PBM) in diets supplemented with DL-Met, MET-MET (AQUAVI®), Bacillus amyloliquefaciens CECT 5940 (ECOBIOL®) and their combinations on growth performance and [...] Read more.
An 8-week feeding trial investigated the effect of Fishmeal (FM) replacement by soybean meal (SBM) and poultry by-product meal (PBM) in diets supplemented with DL-Met, MET-MET (AQUAVI®), Bacillus amyloliquefaciens CECT 5940 (ECOBIOL®) and their combinations on growth performance and health of juvenile Litopenaeus vannamei. A total of six experimental diets were formulated according to L. vannamei nutritional requirements. A total of 480 shrimp (0.30 ± 0.04 g) were randomly distributed into 24 tanks (4 repetitions/each diet, 20 shrimp/tank). Shrimp were fed with control diet (CD; 200 g/Kg fishmeal) and five diets with 50% FM replacement supplemented with different methionine sources, probiotic (B. amyloliquefaciens CECT 5940) and their combinations: D1 (0.13% DL-MET), D2 (0.06% MET-MET), D3 (0.19% MET-MET), D4 (0.13% DL-MET plus 0.10% B. amyloliquefaciens CECT 5940 and D5 (0.06% MET-MET plus 0.10% B. amyloliquefaciens CECT 5940). Shrimp fed D3 and D5 had significantly higher final, weekly weight gain, and final biomass compared to shrimp fed CD (p < 0.05). Shrimp fed D2 to D5 increased the hepatopancreas epithelial cell height (p < 0.05). Digestive enzymatic activities were significantly increased in shrimp hepatopancreas’ fed D3 (p < 0.05). Meanwhile, shrimp fed D1 had significant downregulation of immune-related genes (p < 0.05). Moreover, shrimp fed D3 and D5 increased the abundance of beneficial prokaryotic microorganisms such as Pseudoalteromonas and Demequina related to carbohydrate metabolism and immune stimulation. Also, shrimp fed D3 and D5 increased the abundance of beneficial eukaryotic microorganism as Aurantiochytrium and Aplanochytrium were related to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production which plays a role in growth promoting or boosting the immunity of aquatic organisms. Therefore, fishmeal could be partially substituted up to 50% by SBM and PBM in diets supplemented with 0.19% MET-MET (AQUAVI®) or 0.06% MET-MET (AQUAVI®) plus 0.10% B. amyloliquefaciens CECT 5940 (ECOBIOL®) and improve the productive performance, health, and immunity of white shrimp. Further research is necessary to investigate synergistic effects of amino acids and probiotics in farmed shrimp diets, as well as to evaluate how SBM and PBM influence the fatty acid composition of reduced fishmeal diets and shrimp muscle quality. Nevertheless, this information could be interesting to develop low fishmeal feeds for aquaculture without affecting the growth and welfare of aquatic organisms. Full article
Show Figures

Figure 1

16 pages, 1351 KiB  
Article
Effect of Rice Protein Meal Replacement of Fish Meal on Growth, Anti-Oxidation Capacity, and Non-Specific Immunity for Juvenile Shrimp Litopenaeus vannamei
by Huaxing Lin, Shuqing He, Beiping Tan, Xiaomin Zhang, Yi Lin and Qihui Yang
Animals 2022, 12(24), 3579; https://doi.org/10.3390/ani12243579 - 17 Dec 2022
Cited by 4 | Viewed by 3026
Abstract
This study assessed the effect of rice protein meal replacement for fish meal on the growth, nonspecific immunity, and disease resistance on juvenile shrimp Litopenaeus vannamei. Six groups of iso-nitrogenous and iso-lipid feeds named FM, R10, R20, R40, R60, and R80 were [...] Read more.
This study assessed the effect of rice protein meal replacement for fish meal on the growth, nonspecific immunity, and disease resistance on juvenile shrimp Litopenaeus vannamei. Six groups of iso-nitrogenous and iso-lipid feeds named FM, R10, R20, R40, R60, and R80 were prepared by replacing 0%, 10%, 20%, 40%, 60%, and 80% in FM protein with RPM, respectively, and then fed to the shrimps (0.54 ± 0.01 g). An amount of 720 healthy and evenly sized shrimps were allocated to six groups (three replicates per group) and fed four times a day (7:00, 11:00, 17:00 and 21:00) for eight weeks. Results revealed no significant differences in WG, FCR, and SGR of shrimps after replacing FM with 10% RPM (p > 0.05). In the R10 and R20 groups, SOD and T-AOC activities were significantly higher than those in the FM group, whereas the opposite was observed for MDA content (p < 0.05). CAT, ACP, and LZM were all significantly higher in the R10, R20, and R40 groups than in the FM group (p < 0.05). GSH-Px activity in the R10 group was significantly higher than the activity in the FM group (p < 0.05). AKP, PO, TYS, GPT, and GOT activities were significantly higher in the R10 group than in the FM group (p < 0.05). Compared to the FM group, the eukaryotic translation initiation factor 3K (eif3k) gene was significantly up-regulated in the R10 group, whereas the penaiedin 3a (pen 3a) and anti-lipopolysaccharide factor (alf) genes were significantly up-regulated in the R10 and R20 groups (p < 0.05). The crustin a (cru a), immune deficiency (imd), and lysozyme (lzm) mRNA levels were significantly higher in the R10, R20, and R40 groups than in the other groups (p < 0.05). The prophenoloxidase (PO) mRNA levels in the R20 group were significantly higher than those in the FM group (p < 0.05). The replacement of 10–40% of FM with RPM improved the gut flora composition of shrimps, increasing beneficial bacteria (Bacteroidetes) abundance and reducing harmful bacteria (Aspergillus and Vibrio) abundance. After the challenge test of Vibrio parahaemolyticus (7 days), the cumulative mortality in the R10 group significantly decreased (p < 0.05). In conclusion, replacement of 10% FM by RPM significantly improved digestibility, protein synthesis, antioxidant capacity, and disease resistance in L. vannamei. Full article
Show Figures

Figure 1

16 pages, 3118 KiB  
Article
Effects of the Replacement of Dietary Fish Meal with Defatted Yellow Mealworm (Tenebrio molitor) on Juvenile Large Yellow Croakers (Larimichthys crocea) Growth and Gut Health
by Jian Zhang, Yanzou Dong, Kai Song, Ling Wang, Xueshan Li, Beiping Tan, Kangle Lu and Chunxiao Zhang
Animals 2022, 12(19), 2659; https://doi.org/10.3390/ani12192659 - 3 Oct 2022
Cited by 15 | Viewed by 2709
Abstract
This study was conducted to investigate the effects of Tenebrio molitor meal (TM) replacement for fish meal (FM) on growth performance, humoral immunity, and intestinal health of juvenile large yellow croakers (Larimichthys crocea). Four experimental diets were formulated by replacing FM [...] Read more.
This study was conducted to investigate the effects of Tenebrio molitor meal (TM) replacement for fish meal (FM) on growth performance, humoral immunity, and intestinal health of juvenile large yellow croakers (Larimichthys crocea). Four experimental diets were formulated by replacing FM with TM at different levels—0% (TM0), 15% (TM15), 30% (TM30), and 45% (TM45). Triplicate groups of juveniles (initial weight = 11.80 ± 0.02 g) were fed the test diets to apparent satiation two times daily for eight weeks. There was no significant difference in final body weight (FBW) and weight gain rate (WG) among TM0, TM15, and TM30, while TM45 feeding significantly reduced the FBW and WG. Compared with TM0, AKP activity in serum was significantly decreased in TM45, while the TM15 group remarkably increased LZM activity. TM30 showed significantly higher serum C3 levels compared to the TM0 group, while the TM addition groups decreased the C4 levels significantly in the serum. In terms of intestinal histology, the addition of TM increased the height and thickness of the intestinal villus and also increased the thickness of the intestinal muscles significantly. The addition of TM significantly reduced the serum DAO and D-lactate concentrations. The results of 16S rRNA gene sequencing showed that the addition of TM significantly enhanced the relative abundance of Bacilli and Lactobacillus and contributed to the decrease in the relative abundance of Plesiomonas. In addition, the TM30 and TM45 groups significantly reduced the abundance of Peptostreptococcaceae. Overall, our results indicated that TM could be a viable alternative protein source, 6.7% TM supplantation (replacing 15% FM) in large yellow croaker feed improved humoral immunity and intestinal health with no adverse effects on growth. Furthermore, the replacement of FM with 30% and 45% TM adversely affects growth and humoral immunity. Full article
Show Figures

Figure 1

15 pages, 704 KiB  
Article
Effects of Chromium-L-Methionine in Combination with a Zinc Amino Acid Complex or Selenomethionine on Growth Performance, Intestinal Morphology, and Antioxidative Enzymes in Red Tilapia Oreochromis spp.
by Rawiwan Limwachirakhom, Supawit Triwutanon, Srinoy Chumkam and Orapint Jintasataporn
Animals 2022, 12(17), 2182; https://doi.org/10.3390/ani12172182 - 25 Aug 2022
Cited by 4 | Viewed by 2125
Abstract
To consider diet optimization for the growth and health of fish under intensive aquaculture systems, with a focus on the farming of Nile tilapia and red tilapia in Thailand, we conducted an experiment based on a completely randomized design (CRD), with three treatments [...] Read more.
To consider diet optimization for the growth and health of fish under intensive aquaculture systems, with a focus on the farming of Nile tilapia and red tilapia in Thailand, we conducted an experiment based on a completely randomized design (CRD), with three treatments and four replicates. Three diets, supplemented with different trace minerals, were applied to selected groups of fish: (a) a control diet, without organic trace minerals supplementation; (b) a T1 diet of chromium-L-methionine at 500 ppb, in combination with a zinc amino acid complex at 60 parts per million (ppm); and (c) a T2 diet of chromium-L-methionine at 500 ppb in combination with selenomethionine at 300 ppb. Red tilapia with an initial mean weight of 190 ± 12 g/fish were randomly distributed into cages of 2 × 2 × 2.5 m in a freshwater pond (12 cages in total), with 34 fish per cage and a density of 17 fish/m3. During the 8 week feeding trial, the fish were fed 3–4% of their body weight twice a day. The fish were weighed, then blood samples were collected to study their immune responses. The intestines were collected, measured, and analyzed at the end of the feeding trial. The results showed that the red tilapia that were fed with diets of chromium-L-methionine in combination with a zinc amino acid complex in the T1 treatment had significantly (p < 0.05) higher final weights, weight gains, average daily gains (ADGs), and better feed conversion ratios (FCRs), compared with fish that were fed with the control diet without organic trace minerals and with fish that were fed with the T2 diet (p < 0.05). The midgut and hindgut villus heights of the group fed with chromium-L-methionine in combination with a zinc amino acid complex in the T1 treatment were significantly higher than those of the other groups (p < 0.05). The levels of the antioxidative enzyme superoxide dismutase (SOD) and lysozyme activity were not significantly different from those of fish that were fed with the control diet (p > 0.05), whereas the glutathione level tended to increase (p < 0.1) in fish that were fed with chromium-L-methionine in combination with selenomethionine in the T2 treatment. Therefore, we concluded that chromium-L-methionine in combination with a zinc amino acid complex or selenomethionine clearly enhanced red tilapia’s growth performance and feed utilization through the promotion of antioxidative enzyme activity and immune response. Full article
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 317 KiB  
Review
The Roles of Polysaccharides in Carp Farming: A Review
by Khang Wen Goh, Zulhisyam Abdul Kari, Wendy Wee, Hien Van Doan, Mohd Farhan Hanif Reduan, Muhammad Anamul Kabir, Martina Irwan Khoo, Syed M. Al-Amsyar and Lee Seong Wei
Animals 2023, 13(2), 244; https://doi.org/10.3390/ani13020244 - 10 Jan 2023
Cited by 12 | Viewed by 2934
Abstract
Carp is an important aquaculture species globally, and the production is expected to increase with the growing market demands. Despite that, disease outbreaks remain a major challenge, impeding the development of sustainable carp farming. Moreover, the application of antibiotics, a common prophylactic agent, [...] Read more.
Carp is an important aquaculture species globally, and the production is expected to increase with the growing market demands. Despite that, disease outbreaks remain a major challenge, impeding the development of sustainable carp farming. Moreover, the application of antibiotics, a common prophylactic agent, can adversely impact public health and the environment. Therefore, polysaccharide has been recognized as a novel prophylactic agent in the health management of carp farming, as well as gaining consumers’ confidence in carp farming products. In this review, the definition, sources, and main roles of polysaccharides in improving growth performance, stimulating the immune system, enhancing disease resistance, and alleviating abiotic stresses in carp farming are discussed and summarized. In addition, the use of polysaccharides in combination with other prophylactic agents to improve carp farming production is also highlighted. This review aims to highlight the roles of polysaccharides and provide valuable information on the benefits of polysaccharides in carp farming. Full article
Back to TopTop