Special Issue "Emerging and Re-Emerging Diseases—Novel Challenges in Today’s World"

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Veterinary Clinical Studies".

Deadline for manuscript submissions: 31 March 2021.

Special Issue Editor

Prof. João R. Mesquita
Website
Guest Editor
Department of Veterinary Clinics, Abel Salazar Biomedical Institute of Sciences (ICBAS), University of Porto, Porto, Portugal
Interests: infectious and parasitic diseases; zoonosis; epidemiology

Special Issue Information

Dear Colleagues,

More than 61% of all human pathogens are zoonotic, representing 75% of all emerging pathogens during the past decade. Although substantial developments in medical/environmental surveillance and in diagnostic methods have been recently achieved, zoonotic emerging and re-emerging diseases are still a major global concern. In fact, such threats are expanding under global warming conditions, particularly in less developed regions. The current 2019 novel coronavirus epidemic is an extreme reminder of the role animal reservoirs play in public health and highlights the need to address health risks at the animal–human–environment interface in a One Health perspective.

Original manuscripts that address any aspects of emerging or re-emerging animal diseases are invited for this Special Issue.

Prof. João R. Mesquita
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • zoonosis
  • infectious diseases
  • parasitic diseases
  • emerging

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle
Genomic Characterization of Salmonella Minnesota Clonal Lineages Associated with Poultry Production in Brazil
Animals 2020, 10(11), 2043; https://doi.org/10.3390/ani10112043 - 05 Nov 2020
Abstract
Salmonella serotype Minnesota has been increasingly detected in Brazilian poultry farms and food products (chicken meat, eggs) in recent years. In addition, S. Minnesota isolates from poultry are generally resistant to several antibiotics and persistent in farm environments. The present study aimed to [...] Read more.
Salmonella serotype Minnesota has been increasingly detected in Brazilian poultry farms and food products (chicken meat, eggs) in recent years. In addition, S. Minnesota isolates from poultry are generally resistant to several antibiotics and persistent in farm environments. The present study aimed to assess phylogenomic diversity of S. Minnesota isolates from the poultry production chain in Brazil. In total, 107 worldwide S. Minnesota whole genomes (including 12 from Brazil) were analyzed using a comparative approach. Phylogenetic analysis demonstrated two clades more related to poultry production in Brazil: S. Minnesota poultry lineages I and II (SM-PLI and SM-PLII). Phylodynamic analysis demonstrated that SM-PLI had a common ancestor in 1915, while SM–PLII originated circa 1971. SM-PLII encompassed a higher number of isolates and presented a recent increase in effective population size (mainly from 2009 to 2012). Plasmids IncA/C2 and ColRNA, antimicrobial resistance genes (aph(3′)-Ia, blaCMY-2, qnrB19, sul2, and tet(A)) and mainly a virulence genetic cluster (including the yersiniabactin operon) were detected in isolates from SM-PLI and/or SM-PLII. This study demonstrates the dissemination of two distinct S. Minnesota lineages with high resistance to antibiotics and important virulence genetic clusters in Brazilian poultry farms. Full article
Show Figures

Figure 1

Open AccessArticle
Molecular Characterization and Developing a Point-of-Need Molecular Test for Diagnosis of Bovine Papillomavirus (BPV) Type 1 in Cattle from Egypt
Animals 2020, 10(10), 1929; https://doi.org/10.3390/ani10101929 - 21 Oct 2020
Abstract
Bovine papillomatosis is a viral disease of cattle causing cutaneous warts. A diagnosis of this viral infection is very mandatory for combating the resulting economic losses. Given the limited data available about bovine papillomavirus (BPV) in Egypt, the present study involved the molecular [...] Read more.
Bovine papillomatosis is a viral disease of cattle causing cutaneous warts. A diagnosis of this viral infection is very mandatory for combating the resulting economic losses. Given the limited data available about bovine papillomavirus (BPV) in Egypt, the present study involved the molecular diagnosis of bovine papillomavirus type-1 (BPV-1), -2, -4, -5, and -10 in cattle presenting cutaneous warts on the head and neck from New Valley Province, Egypt. The phylogenetic analysis of the detected types of BPV was also performed, followed by developing a point-of-need molecular assay for the rapid identification of identified BPV types. In this regard, a total of 308 cattle from private farms in Egypt were clinically examined, of which 13 animals presented cutaneous warts due to suspected BPV infection. The symptomatic animals were treated surgically, and biopsies from skin lesions were collected for BPV-1, -2, -4, -5, and -10 molecular identification using polymerase chain reaction (PCR). The presence of BPV-1 DNA was confirmed in 11 collected samples (84.6%), while BPV-2, -4, -5, and -10 were not detected. Sequencing of the PCR products suggested the Egyptian virus is closely related to BPV found in India. An isothermal nucleic acid amplification test (NAAT) with labeled primers specific for the BPV-1 L1 gene sequence, and based on recombinase polymerase amplification (RPA), in combination with a lateral flow strip assay for the detection of RPA products, was developed and tested. The point-of-need molecular assay demonstrated a diagnostic utility comparable to PCR-based testing. Taken together, the present study provides interesting molecular data related to the occurrence of BPV-1 in Egypt and reveals the genetic relatedness of the Egyptian BPV-1 with BPV-1 found in buffalo in India. In addition, a simple, low-cost combined test was also validated for diagnosis of the infection. The present study suggests the necessity of future investigations about the circulating strains of the virus among the cattle in Egypt to assess their genetic relatedness and better understand the epidemiological pattern of the disease. Full article
Show Figures

Figure 1

Open AccessArticle
Comparison of the Effectiveness of Two Different Vaccination Regimes for Avian Influenza H9N2 in Broiler Chicken
Animals 2020, 10(10), 1875; https://doi.org/10.3390/ani10101875 - 14 Oct 2020
Abstract
Low pathogenic avian influenza virus is one of the major threats that has been affecting the poultry industry in the Middle East region for decades. Attempts to eradicate this disease have failed. Currently, there are commercial vaccines that are either imported or produced [...] Read more.
Low pathogenic avian influenza virus is one of the major threats that has been affecting the poultry industry in the Middle East region for decades. Attempts to eradicate this disease have failed. Currently, there are commercial vaccines that are either imported or produced locally from recently circulating isolates of H9N2 in Egypt and Middle Eastern countries. This present work focused on comparing the effectiveness of two vaccines belonging to these categories in Egypt. Two commercial broiler flocks (Cobb-500 Broiler) with maternally derived immunity (MDA) against H9N2 virus were employed and placed under normal commercial field conditions or laboratory conditions. Immunity was evaluated on the basis of detectable humoral antibodies against influenza H9N2 virus, and challenge was conducted at 28 days of life using a recent wild H9N2 virus. The results showed that vaccination on the 7th day of life provided significantly higher immune response in both vaccine types, with significantly lower virus shedding compared to vaccination at day 1 of life, regardless of field or laboratory conditions. In addition, the vaccine produced from a recent local H9N2 isolate (MEFLUVAC-H9-16) provided a significantly higher humoral immune response under both field and laboratory conditions, as measured by serology and virus shedding (number of shedders and amount of shedding virus), being significantly lower following challenge on the 28th day of life, contrary to the imported H9 vaccine. In conclusion, use of H9N2 vaccine at 7 days of life provided a significantly higher protection than vaccination at day 1 of life in birds with MDA, suggesting vaccination regimes between 5–8-days of life for broiler chicks with MDA. Moreover, use of a vaccine prepared from a recently circulating H9N2 virus showed significantly higher protection and was more suitable for birds in the Middle East. Full article
Show Figures

Figure 1

Open AccessArticle
Circulation of Indigenous Bovine Respiratory Syncytial Virus Strains in Turkish Cattle: The First Isolation and Molecular Characterization
Animals 2020, 10(9), 1700; https://doi.org/10.3390/ani10091700 - 20 Sep 2020
Abstract
Bovine respiratory disease (BRD) is a huge economic burden on the livestock industries of countries worldwide. Bovine respiratory syncytial virus (BRSV) is one of the most important pathogens that contributes to BRD. In this study, we report the identification and first isolation, with [...] Read more.
Bovine respiratory disease (BRD) is a huge economic burden on the livestock industries of countries worldwide. Bovine respiratory syncytial virus (BRSV) is one of the most important pathogens that contributes to BRD. In this study, we report the identification and first isolation, with molecular characterization, of a new BRSV strain from lung specimens of three beef cows in Turkey that died from respiratory distress. After the screening of lung tissues for BRD-associated viruses using a multiscreen antigen-ELISA, a BRSV antigen was detected. This was then confirmed by real-time RT-PCR specific for BRSV. Following confirmation, virus isolation was conducted in MDBK cell cultures and clear CPE, including syncytia compatible with BRSV, were detected. RT-nested PCR, using F gene-specific primers, was performed on the cultured isolates, and the products were sequenced and deposited to Genbank with accession numbers MT179304, MT024766, and MT0244767. Phylogenetic analysis of these sequences indicated that the cattle were infected with BRSV from subgroup III and were closely related to previously identified American and Turkish strains, but contained some amino acid and nucleotide differences. This research paves the way for further studies on the molecular characteristics of natural BRSV isolates, including full genome analysis and disease pathogenesis, and also contributes to the development of robust national strategies against this virus. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview
African Lions and Zoonotic Diseases: Implications for Commercial Lion Farms in South Africa
Animals 2020, 10(9), 1692; https://doi.org/10.3390/ani10091692 - 18 Sep 2020
Abstract
African lions (Panthera leo) are bred in captivity on commercial farms across South Africa and often have close contact with farm staff, tourists, and other industry workers. As transmission of zoonotic diseases occurs through close proximity between wildlife and humans, these [...] Read more.
African lions (Panthera leo) are bred in captivity on commercial farms across South Africa and often have close contact with farm staff, tourists, and other industry workers. As transmission of zoonotic diseases occurs through close proximity between wildlife and humans, these commercial captive breeding operations pose a potential risk to thousands of captive lions and to public health. An understanding of pathogens known to affect lions is needed to effectively assess the risk of disease emergence and transmission within the industry. Here, we conduct a systematic search of the academic literature, identifying 148 peer-reviewed studies, to summarize the range of pathogens and parasites known to affect African lions. A total of 63 pathogenic organisms were recorded, belonging to 35 genera across 30 taxonomic families. Over half were parasites (35, 56%), followed by viruses (17, 27%) and bacteria (11, 17%). A number of novel pathogens representing unidentified and undescribed species were also reported. Among the pathogenic inventory are species that can be transmitted from lions to other species, including humans. In addition, 83 clinical symptoms and diseases associated with these pathogens were identified. Given the risks posed by infectious diseases, this research highlights the potential public health risks associated with the captive breeding industry. We recommend that relevant authorities take imminent action to help prevent and manage the risks posed by zoonotic pathogens on lion farms. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

Open AccessLetter
Trefoil Factor Family Member 2 (TFF2) as an Inflammatory-Induced and Anti-Inflammatory Tissue Repair Factor
Animals 2020, 10(9), 1646; https://doi.org/10.3390/ani10091646 - 14 Sep 2020
Abstract
Trefoil factor family member 2 (TFF2) is known for its involvement in mucosal repair. Whereas it is overexpressed during inflammatory processes, adding TFF2 leads to an anti-inflammatory effect that would contribute to create the microenvironment required for tissue repair. These properties present TFF2 [...] Read more.
Trefoil factor family member 2 (TFF2) is known for its involvement in mucosal repair. Whereas it is overexpressed during inflammatory processes, adding TFF2 leads to an anti-inflammatory effect that would contribute to create the microenvironment required for tissue repair. These properties present TFF2 with a homeostatic pattern during inflammatory processes as illustrated by selected examples. Full article
Show Figures

Graphical abstract

Back to TopTop