Bacterial Aquaculture Pathology

A special issue of Animals (ISSN 2076-2615).

Deadline for manuscript submissions: 20 August 2025 | Viewed by 1920

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Microbiología y Parasitología, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
Interests: aquaculture; bacteriology; fish disease; virulence factors; taxonomy; vaccine; molecular diagnosis; secretion system

E-Mail Website
Guest Editor
Facultad de Biología, CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
Interests: aquaculture; bacteriology; fish disease; virulence factors; vaccine; molecular diagnosis

Special Issue Information

Dear Colleagues,

Aquaculture is one of the fastest-growing food production sectors in the world. The economic benefits are limited by diverse issues such as known or emerging infectious diseases. Up-to-date knowledge about the infection mechanism, diagnosis tools or prevention/treatment are vital to reduce economic losses. Furthermore, research on diseases in their natural environment is vital for the exploitation of natural resources and identification of spread mechanisms.

The Special Issue is focused on sharing all research relating to bacterial diseases in any aquatic animals, in order to interconnect different views of the pathologies and contribute to improve aquaculture systems or the survival of wild animals.

We are pleased to invite you to collaborate with original research articles (basic and applied) or reviews in this Special Issue.

Dr. Noemí Buján Gómez
Prof. Dr. Beatriz Magariños Ferro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquaculture
  • aquatic animal diseases
  • bacteriology
  • fish
  • bivalve
  • crustacean
  • virulence factors
  • disease control and molecular diagnosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4136 KiB  
Article
Unraveling Genomic and Pathogenic Features of Aeromonas ichthyocola sp. nov., Aeromonas mytilicola sp. nov., and Aeromonas mytilicola subsp. aquatica subsp. nov.
by Nihed Ajmi, Muhammed Duman, Batuhan Coskun, Ceren Esen, Oner Sonmez, Gorkem Tasci, Orkide Coskuner-Weber, Hilal Ay, Digdem Yoyen-Ermis, Artun Yibar, Andrew P. Desbois and Izzet Burcin Saticioglu
Animals 2025, 15(7), 948; https://doi.org/10.3390/ani15070948 - 26 Mar 2025
Cited by 1 | Viewed by 438
Abstract
The Gram-negative genus Aeromonas contains diverse bacterial species that are prevalent in aquatic environments. This present study describes three novel Aeromonas strains: A. ichthyocola sp. nov. A-5T and A. mytilicola subsp. aquatica subsp. nov. A-8T isolated from rainbow trout (Oncorhynchus [...] Read more.
The Gram-negative genus Aeromonas contains diverse bacterial species that are prevalent in aquatic environments. This present study describes three novel Aeromonas strains: A. ichthyocola sp. nov. A-5T and A. mytilicola subsp. aquatica subsp. nov. A-8T isolated from rainbow trout (Oncorhynchus mykiss), and A. mytilicola sp. nov. A-7T isolated from mussels (Mytilus galloprovincialis), respectively. Genomic analyses revealed that strains A-5T and A-7T shared the highest 16S rRNA gene sequence similarity with A. rivipollensis P2G1T (99.7% and 99.8%, respectively), while strain A-8T exhibited 99.7% identity with A. media RMT. Together with morphological, physiological, and biochemical data, genome-based analyses provided additional evidence for species differentiation. Digital DNA–DNA hybridization (dDDH; 56.8−65.9%) and average nucleotide identity (ANI; 94.2–95.7%) values fell below the species delineation thresholds, confirming that these isolates represent distinct taxa. Pathogenicity assays using greater wax moth (Galleria mellonella) larvae demonstrated strain-specific virulence profiles. Further genomic analyses identified biosynthetic gene clusters for nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs), which often have roles in secondary metabolite production. Ecological analyses, based on genomic comparisons and metagenomic database searches, revealed the adaptability of the strains to diverse habitats, including freshwater, wastewater, and activated sludge. Based on the genetic and phenotypic data, the novel taxa Aeromonas ichthyocola sp. nov. A-5ᵀ (LMG 33534ᵀ = DSM 117488ᵀ), Aeromonas mytilicola sp. nov. A-7ᵀ (LMG 33536ᵀ = DSM 117490ᵀ), and Aeromonas mytilicola subsp. aquatica subsp. nov. A-8ᵀ (LMG 33537ᵀ = DSM 117493ᵀ) are proposed. Full article
(This article belongs to the Special Issue Bacterial Aquaculture Pathology)
Show Figures

Figure 1

19 pages, 7270 KiB  
Article
Mucosal Exosome Proteomics of Hybrid Grouper Epinephelus fuscoguttatus♀ × E. lanceolatus♂ Infected by Pseudomonas plecoglossicida
by Dong Yang, Xiaowan Ma, Shengping Zhong, Jiasen Guo, Dewei Cheng, Xuyang Chen, Teng Huang, Lixing Huang, Ying Qiao and Theerakamol Pengsakul
Animals 2024, 14(23), 3401; https://doi.org/10.3390/ani14233401 - 25 Nov 2024
Viewed by 940
Abstract
Pseudomonas plecoglossicida infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper [...] Read more.
Pseudomonas plecoglossicida infection, which causes visceral white spot disease, is a significant and economically devastating disease in aquaculture. In this study, we investigated the impact of bacterial infection on the protein composition of exosomes derived from the surface mucus of the hybrid grouper Epinephelus fuscoguttatus♀ × E. lanceolatus♂. Two hundred healthy fish were randomly separated into challenge and control groups. Fish from the challenge group received 103 CFU/g of the bacterial pathogen P. plecoglossicida via intraperitoneal injection, while sterile PBS was used as a negative control. After injection, the mucus was collected and the exosomes were extracted for proteomic analysis. The results of proteomic analysis revealed that P. plecoglossicida infection significantly increased the levels of innate immune proteins, including lysosomal and peroxisomal proteins, within the exosomes. Furthermore, the CAD protein was found to play a pivotal role in the protein interaction networks involved in the response to P. plecoglossicida infection. Intriguingly, we also observed a significant increase in the levels of metal-binding proteins within the exosomes, providing important evidence of nutritional immunity on the surfaces of the fish hosts. Notably, several proteins, such as plasma kallikrein, Annexin A5, eukaryotic translation initiation factor 3 subunit M, and S-methyl-5-thioadenosine phosphorylase, exhibited a remarkable increase in abundance in exosomes after infection. These proteins show promising potential as noninvasive biomarkers for the diagnosis of visceral white spot disease. The study contributes to the understanding of the host response to P. plecoglossicida infection and may aid policymakers in implementing appropriate intervention measures for effective risk management of this devastating disease. Full article
(This article belongs to the Special Issue Bacterial Aquaculture Pathology)
Show Figures

Figure 1

Back to TopTop