New Strategies for Forage Breeding and Cultivation Under Challenging Conditions

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Grassland and Pasture Science".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 1046

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Industrial and Forage Crops, Hellenic Agricultural Organization—DIMITRA, 41335 Larissa, Greece
Interests: genetic improvement of forage crops with emphasis on legumes; genotype x environment interaction; innovative breeding methodologies; development of resilient cultivars tolerant to biotic and abiotic stresses; elite cultivar development; cultivar maintenance and seed production; sustainable cultivation systems

Special Issue Information

Dear Colleagues,

Forage plants are crucial for livestock nutrition, enhancing soil health, and supporting biodiversity in agricultural ecosystems. However, they face significant challenges, including climate change, soil degradation, water scarcity, and pests and diseases, which threaten their productivity and sustainability. Addressing these problems requires a combination of good agricultural practices, innovative technologies, and the development of more resilient crop varieties.

Cutting-edge research on breeding forage plants leverages traditional breeding efforts with genomic selection, gene editing, and high-throughput phenotyping to develop varieties with enhanced traits, tolerance to abiotic and biotic stresses, and nutrient quality. Additionally, integrating sustainable management and adopting innovative practices such as precision agriculture, intercropping, and regenerative agriculture promotes ecological balance and optimizes forage production and quality in changing environmental conditions.

This Special Issue aims to consolidate and disseminate innovative research on the genetics, breeding, cultivation, and management of forage species, highlighting contemporary challenges in forage production, promoting innovative breeding techniques, and sharing the best practices for sustainable land use to ultimately foster collaboration and knowledge exchange among researchers, practitioners, and policymakers in the field.

We invite scientists to submit their papers on the following topics:

  • Original research articles such as the following:
    • Studies reporting novel breeding techniques and their application in developing resilient forage varieties.
    • Papers analyzing the ecological and economic impacts of new breeding and cultivation strategies on forage systems and sustainability.
    • Interdisciplinary studies that integrates insights from agronomy, ecology, and environmental science to address the complexities of forage production under climate change and other challenges.
  • Review articles: comprehensive reviews summarizing recent advancements and highlighting successes and ongoing challenges.
  • Case reports: examples of the successful implementation of innovative cultivation practices in various environments, demonstrating real-world applications of new strategies.
  • Protocols or technical notes: detailed descriptions of new experimental approaches or technologies used in forage research, such as precision agriculture tools or phenotyping techniques.

These various contributions would provide a comprehensive overview of the latest advancements and practical strategies in this field.

Dr. Chrysanthi Pankou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • forage species
  • breeding
  • resilient varieties
  • yield optimization
  • functional traits
  • phenotyping
  • livestock nutrition
  • integrated pest management
  • intercropping
  • sustainable agriculture
  • ecosystem services
  • regenerative practices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 1455 KiB  
Article
Intercropping of Cereals with Lentil: A New Strategy for Producing High-Quality Animal and Human Food
by Theodoros Gkalitsas, Fokion Papathanasiou and Theano Lazaridou
Agronomy 2025, 15(7), 1658; https://doi.org/10.3390/agronomy15071658 - 8 Jul 2025
Abstract
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) [...] Read more.
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) under two spatial arrangements (1:1 alternate rows and mixed rows at a 50:50 seeding ratio) in northwestern Greece. A completely randomized design was applied with three replications. Differences were found between treatments regarding yield as well as protein content. Results showed that the highest total grain yield (2478.6 kg/ha) and land equivalent ratio (LER = 2.50) were recorded in the Yekora + Thessalia combination (alternate rows). Legume protein content remained consistently high (27–31%), while cereal protein content varied with genotype. Intercropping in alternate rows generally outperformed mixed sowing, indicating the importance of spatial arrangement in optimizing resource use. These findings suggest that properly designed cereal–lentil intercropping systems can enhance yield and quality while supporting sustainable agricultural practices. Intercropping of Yekora with lentil was superior compared to lentil and bread wheat monocultures and can be recommended as an alternative method for the production of human and animal food. Full article
19 pages, 3707 KiB  
Article
CdGLK1 Transcription Factor Confers Low-Light Tolerance in Bermudagrass via Coordinated Upregulation of Photosynthetic Genes and Enhanced Antioxidant Enzyme Activity
by Peng Han, Jun Liu, Jingjin Yu, Zhongpeng Liu, Fahui He and Zhimin Yang
Agronomy 2025, 15(5), 1225; https://doi.org/10.3390/agronomy15051225 - 17 May 2025
Viewed by 425
Abstract
As a widely cultivated warm-season turfgrass, bermudagrass (Cynodon spp.) faces significant challenges in shaded environments due to its inherent low-light sensitivity. While improving photosynthetic adaptation represents a promising strategy to address this limitation, the associated regulatory mechanisms remain insufficiently characterized. In this [...] Read more.
As a widely cultivated warm-season turfgrass, bermudagrass (Cynodon spp.) faces significant challenges in shaded environments due to its inherent low-light sensitivity. While improving photosynthetic adaptation represents a promising strategy to address this limitation, the associated regulatory mechanisms remain insufficiently characterized. In this study, we found that the overexpression of CdGLK1 significantly improved low-light tolerance in bermudagrass by increasing shoot weight, root weight, chlorophyll a, chlorophyll b, net photosynthetic rate (Pn), and maximum quantum yield of photosystem II (Fv/Fm). Furthermore, coordinated upregulation of both C3 and C4 pathway enzymes was observed under low-light stress, accompanied by enhanced antioxidant capacity and reduced photoxidative damage. Transcriptomic profiling further revealed CdGLK1-mediated activation of photosynthetic machinery components spanning light harvesting, electron transport, and carbon fixation modules. These findings establish CdGLK1 as a master integrator of photoprotection and metabolic adaptation under light-limiting conditions, providing both mechanistic insights and practical strategies for developing shade-resilient turfgrass cultivars. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 1348 KiB  
Review
The Genome Era of Forage Selection: Current Status and Future Directions for Perennial Ryegrass Breeding and Evaluation
by Jiashuai Zhu, Kevin F. Smith, Noel O. Cogan, Khageswor Giri and Joe L. Jacobs
Agronomy 2025, 15(6), 1494; https://doi.org/10.3390/agronomy15061494 - 19 Jun 2025
Viewed by 309
Abstract
Perennial ryegrass (Lolium perenne L.) is a cornerstone forage species in temperate dairy systems worldwide, valued for its high yield potential, nutritive quality, and grazing recovery. However, current regional evaluation systems face challenges in accurately assessing complex traits like seasonal dry matter [...] Read more.
Perennial ryegrass (Lolium perenne L.) is a cornerstone forage species in temperate dairy systems worldwide, valued for its high yield potential, nutritive quality, and grazing recovery. However, current regional evaluation systems face challenges in accurately assessing complex traits like seasonal dry matter yield due to polygenic nature, environmental variability, and lengthy evaluation cycles. This review examines the evolution of perennial ryegrass evaluation systems, from regional frameworks—like Australia’s Forage Value Index (AU-FVI), New Zealand’s Forage Value Index (NZ-FVI), and Ireland’s Pasture Profit Index (PPI)—to advanced genomic prediction (GP) approaches. We discuss prominent breeding frameworks—F2 family, Half-sib family, and Synthetic Population—and their integration with high-throughput genotyping technologies. Statistical models for GP are compared, including marker-based, kernel-based, and non-parametric approaches, highlighting their strengths in capturing genetic complexity. Key research efforts include representative genotyping approaches for heterozygous populations, disentangling endophyte–host interactions, extending prediction to additional economically important traits, and modeling genotype-by-environment (G × E) interactions. The integration of multi-omics data, advanced phenotyping technologies, and environmental modeling offers promising avenues for enhancing prediction accuracy under changing environmental conditions. By discussing the combination of regional evaluation systems with GP, this review provides comprehensive insights for enhancing perennial ryegrass breeding and evaluation programs, ultimately supporting sustainable productivity of the dairy industry in the face of climate challenges. Full article
Show Figures

Graphical abstract

Back to TopTop