Next Issue
Volume 2, June
Previous Issue
Volume 1, December
 
 

Glacies, Volume 2, Issue 1 (March 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 2183 KiB  
Article
Glacial Thrusts: Implications for the Crustal Deformation of the Icy Satellites
by Costanza Rossi, Riccardo Pozzobon, Mateo Martini, Eliseo Flores, Alice Lucchetti, Maurizio Pajola, Luca Penasa, Giovanni Munaretto, Filippo Tusberti and Joel Beccarelli
Glacies 2025, 2(1), 4; https://doi.org/10.3390/glacies2010004 - 10 Mar 2025
Viewed by 602
Abstract
The icy satellites of the outer Solar System show surfaces strongly deformed by tectonic activity, which mostly shows wide strike-slip zones. The structural pattern recognized on such regions can be ascribed to the deformation observed on terrestrial analogs identified in glaciers, whose flow [...] Read more.
The icy satellites of the outer Solar System show surfaces strongly deformed by tectonic activity, which mostly shows wide strike-slip zones. The structural pattern recognized on such regions can be ascribed to the deformation observed on terrestrial analogs identified in glaciers, whose flow produces deformation structures that bear key information to compare and better understand the surface and subsurface development of the structures identified on icy satellites. Multiscale analysis is used to acquire local- and regional-scale datasets that are compared with icy satellite data. Glacier deformation structures are compared with those identified in a unique regional-scale investigation of the icy satellites. In this work, we present a review of the approach used for the comparison between glacial and icy satellite shear zone deformation. The comparison concerns the deformation styles observed in these bodies, with a particular emphasis on compressional structures, called thrusts, which are hardly detected on icy satellites. Thrusts occur on glaciers and are important for glacial flow, deformation compensation and fluid circulation. Here, we report the occurrence of glacial thrust to better understand the icy environment under deformation and make inferences on icy satellite shear zones. Thanks to fieldwork and remote sensing analyses, we can infer the potential location and development of such compressional structures on icy satellites, which are pivotal for the compensation of their tectonics. We analyze glacial deformation by considering the icy satellite context and we discuss their potential detection with data from current and future planetary missions. A total of five categories of thrusts are presented to understand the best method for their detection, and a conceptual model on icy satellite surface and subsurface structural pattern is proposed. Full article
Show Figures

Figure 1

14 pages, 8944 KiB  
Article
Computation of the Digital Elevation Model and Ice Dynamics of Talos Dome and the Frontier Mountain Region (North Victoria Land/Antarctica) by Synthetic-Aperture Radar (SAR) Interferometry
by Paolo Sterzai, Nicola Creati and Antonio Zanutta
Glacies 2025, 2(1), 3; https://doi.org/10.3390/glacies2010003 - 12 Feb 2025
Viewed by 420
Abstract
In Antarctica, SAR interferometry has largely been used in coastal glacial areas, while in rare cases this method has been used on the Antarctic plateau. In this paper, the authors present a digital elevation and ice flow map based on SAR interferometry for [...] Read more.
In Antarctica, SAR interferometry has largely been used in coastal glacial areas, while in rare cases this method has been used on the Antarctic plateau. In this paper, the authors present a digital elevation and ice flow map based on SAR interferometry for an area encompassing Talos Dome (TD) and the Frontier Mountain (FM) meteorite site in North Victoria Land/Antarctica. A digital elevation model (DEM) was calculated using a double SAR interferometry method. The DEM of the region was calculated by extracting approximately 100 control points from the Reference Elevation Model of Antarctica (REMA). The two DEMs differ slightly in some areas, probably due to the penetration of the SAR-C band signal into the cold firn. The largest differences are found in the western area of TD, where the radar penetration is more pronounced and fits well with the layer structures calculated by the georadar and the snow accumulation observations. By differentiating a 70-day interferogram with the calculated DEM, a displacement interferogram was calculated that represents the ice dynamics. The resulting ice flow pattern clearly shows the catchment areas of the Priestley and Rennick Glaciers as well as the ice flow from the west towards Wilkes Basin. The ice velocity field was analysed in the area of FM. This area has become well known due to the search for meteorites. The velocity field in combination with the calculated DEM confirms the generally accepted theories about the accumulation of meteorites over the Antarctic Plateau. Full article
Show Figures

Figure 1

15 pages, 4213 KiB  
Article
River Ice Effects on Sediment Transport and Channel Morphology—Progress and Research Needs
by Hung Tao Shen
Glacies 2025, 2(1), 2; https://doi.org/10.3390/glacies2010002 - 22 Jan 2025
Viewed by 762
Abstract
Sediment transport in alluvial channels has a long history of intensive research. River ice could affect sediment transport and channel morphology through the impact of various dynamic and thermal ice processes. However, studies on sediment transport under the influence of ice have been [...] Read more.
Sediment transport in alluvial channels has a long history of intensive research. River ice could affect sediment transport and channel morphology through the impact of various dynamic and thermal ice processes. However, studies on sediment transport under the influence of ice have been minimal until recent years. This phenomenon was partially due to the complicated interactions between ice, flow, and sediment dynamics, which require a good understanding of the river ice process, in addition to the difficult field data collection conditions. This paper reviews the progress and needs of river ice-related research on sediment transport and channel morphology, including the influence of ice cover and surface ice runs on sediment transport, the effects of frazil ice, anchor ice, and bank stability with freeze-thaw effects. Full article
Show Figures

Figure 1

4 pages, 5680 KiB  
Editorial
Ice and Snow Scholarship: Challenges and Opportunities
by Steven R. Fassnacht
Glacies 2025, 2(1), 1; https://doi.org/10.3390/glacies2010001 - 22 Jan 2025
Viewed by 719
Abstract
The issues that ice and snow scholars are defining and addressing are becoming more urgent, coupled with the increasing scope of such issues [...] Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop