River Ice Effects on Sediment Transport and Channel Morphology—Progress and Research Needs
Abstract
:1. Introduction
2. Sediment Transport Under Ice Cover
2.1. Bed Load Transport
2.2. Suspended Load
2.3. Bed Roughness
2.4. Water Temperature Effect
2.5. Fine Sediment Transport
3. In-Channel Ice-Sediment Interactions
3.1. Ice Jam Evolution and Bed Change
3.2. Frazil Jam/Hanging Dam
3.3. Ice Cover Effect on Alternate Bar Development
3.4. Sediment Inclusion and Transport by Ice
3.4.1. Frazil Scavenging
3.4.2. Bed Sediment Attachment
3.4.3. Anchor Ice
4. Sediment Load in Glacial-Fed Rivers
5. Bank Erosion and Failure
Modeling Thermal-Ice Processes Related to Bank Failure
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prowse, T.T.; Gridley, N.C. (Eds.) Environmental Aspects of River Ice; NHRI Science Report No. 5; National Hydrology Research Institute: Saskatoon, SK, Canada, 1993; 155p, ISBN 0-662-20820-X. [Google Scholar]
- Nilsson, C.; Polvi, L.E.; Lind, L. Extreme events in streams and rivers in arctic and subarctic regions in an uncertain future. Freshw. Biol. 2015, 60, 2535–2546. [Google Scholar] [CrossRef]
- Ettema, R. Ice effects on sediment transport in rivers. In Sedimentation Engineering; Garcia, M.H., Ed.; ASCE Publications: Reston, VA, USA, 2006; pp. 613–645. [Google Scholar]
- Turcotte, B.; Morse, B.; Bergeron, N.E.; Roy, A.G. Sediment transport in ice-affected rivers. J. Hydrol. 2011, 409, 561–577. [Google Scholar] [CrossRef]
- Mercer, A.G.; Cooper, R.H. Bed scour related to the growth of a major ice jam. In Proceedings of the 3rd National Hydrotechnology Conference, Quebec, QC, Canada, 30–31 May 1977. [Google Scholar]
- Burrows, R.L.; Harrold, P.E. Sediment Transport in the Tanana River near Fairbanks, Alaska, 1980–1981; Water Resources Investigations Report 83-4064; USGS: Washington, DC, USA, 1983; 122p. [Google Scholar] [CrossRef]
- Lawson, D.E.; Chacho, E.F.; Brockett, B.E.; Wuebben, J.L.; Collins, C.M. Morphology, Hydraulics, and Sediment Transport of an Ice-Covered River: Field Techniques and Initial Data; CRREL Report 86-11; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1986; 49p. [Google Scholar]
- Ettema, R.; Zabilansky, L. Ice Influences on Channel Stability: Insights from Missouri’s Fort Peck Reach. J. Hydr. Eng. 2004, 130, 279–292. [Google Scholar] [CrossRef]
- Lotsari, E.; Lintunen, K.; Kasvi, E.; Alho, P.; Blåfield, L. The impacts of near-bed flow characteristics on river bed sediment transport under ice-covered conditions in 2016–2021. J. Hydrol. 2022, 615, 128610. [Google Scholar] [CrossRef]
- Zakharov, I.; Puestow, T.; Khan, A.A.; Briggs, R.; Barrette, P. Review of River Ice Observation and Data Analysis Technologies. Hydrology 2024, 11, 126. [Google Scholar] [CrossRef]
- van Rooijen, E.; Dietze, M.; Lotsari, E. Employing novel wireless agricultural sensors for real-time monitoring of fluvial bank erosion. Earth Surf. Process. Landforms. 2023, 48, 2480–2499. [Google Scholar] [CrossRef]
- Wu, W. Computational River Dynamics; Taylor & Francis/Balkema: London, UK, 2008; 494p, ISBN 978-0-415-44960-1. [Google Scholar]
- Uzuner, M.S. The composite roughness of ice-covered streams. J. Hydr. Res. 1975, 13, 79–102. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, M.; Gu, S.; Huai, W. Analytical model for stage-discharge prediction in rectangular ice-covered channels. J. Hydr. Eng. 2016, 142, 06016006. [Google Scholar] [CrossRef]
- Shen, H.T.; Yapa, P.D. Flow resistance of river ice cover. J. Hydr. Eng. 1986, 112, 142–156. [Google Scholar] [CrossRef]
- Lotsari, E.; Dietze, M.; Kämäri, M.; Alho, P.; Kasvi, E. Macro-turbulent flow and its impacts on sediment transport potential of a subarctic river during ice-covered and open-channel conditions. Water 2020, 12, 1874. [Google Scholar] [CrossRef]
- Koyuncu, B.; Le, T.B. On the impacts of ice cover on flow profiles in a bend. Water Resour. Res. 2022, 58, e2021WR031742. [Google Scholar] [CrossRef]
- Brown, C.B. Sediment Transport, Chapter XII. In Engineering Hydraulics; Rouse, H., Ed.; John Wiley & Sons: New York, NY, USA, 1950; pp. 769–857. [Google Scholar]
- Chien, N.; Wan, Z.H. Mechanics of Sediment Transport; Science Press: Beijing, China, 1986; 656p. (In Chinese) [Google Scholar]
- Meyer-Peter, E.; Muller, R. Formulas for bed-load transport. In Proceedings of the 2nd Meeting of IAHR, Stockholm, Sweden, 7–9 June 1948; pp. 39–64. [Google Scholar]
- van Rijn, L.C. Sediment transport, Part I: Bed load transport. J. Hydr. Eng. 1984, 110, 1431–1456. [Google Scholar] [CrossRef]
- Knack, I.M.; Shen, H.T. Sediment transport in ice covered channels. Int. J. Sediment Res. 2015, 30, 63–67. [Google Scholar] [CrossRef]
- Sayre, W.W.; Song, G.B. Effects of Ice Cover on Alluvial Channel Flow and Sediment Transport Processes; IIHR Report No. 218; Iowa Institute of Hydraulic Research: Iowa City, IA, USA, 1979; 102p. [Google Scholar]
- Wang, F.; Huai, W.; Guo, Y. Analytical model for the suspended sediment concentration in the ice-covered alluvial channels. J. Hydrol. 2021, 597, 126338. [Google Scholar] [CrossRef]
- Shen, H.T.; Ackermann, N.L. Wintertime flow distribution in river channels. J. Hydr. Div. 1980, 106, 805–817. [Google Scholar] [CrossRef]
- Koyuncu, B.; Akerkouch, L.; Le, T. On the depth-averaged models of ice-covered flows. Environ. Fluid Mech. 2024, 24, 1263–1289. [Google Scholar] [CrossRef]
- Smith, B.T.; Ettema, R. Flow resistance in ice-covered alluvial channels. J. Hydr. Eng. 1997, 123, 592–599. [Google Scholar] [CrossRef]
- Knack, I.K.; Shen, H.T. A Numerical model for sediment transport and bed change with river ice. J. Hydr. Res. 2018, 56, 844–856. [Google Scholar] [CrossRef]
- Chien, N. Effects of water temperature on sediment movement. J. Sediment Res. 1958, 3, 15–28. (In Chinese) [Google Scholar]
- Taylor, B.D.; Vanoni, V.A. Temperature effects in high transport, flatbed flows. J. Hydr. Div. 1972, 98, 2191–2206. [Google Scholar] [CrossRef]
- Hong, R.-J.; Karim, M.F.; Kennedy, J.F. Low-temperature effects on flow in sand-bed streams. J. Hydr. Eng. 1984, 110, 109–125. [Google Scholar] [CrossRef]
- Zhang, R.J. A review on the gravitation theory of sediment suspension. J. Hydr. Eng. Chin. Hydr. Eng. Soc. 1963, 3, 11–23. (In Chinese) [Google Scholar]
- Chang, H.H. Fluvial Processes in River Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1988; 432p, ISBN 0-89464-737-7. [Google Scholar]
- Yang, X.; Zhang, B.; Shen, H.T. Simulation of wintertime fluvial processes in the Lower Yellow River. J. Hydrodyn. Ser. B. 1994, 6, 33–42. [Google Scholar]
- Carr, M.L.; Tuthill, A.M. Modeling of scour-inducing ice effects at Melvin Price Lock and Dam. J. Hydr. Eng. 2012, 138, 85–92. [Google Scholar] [CrossRef]
- Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng. 2015, 42, 696–703. [Google Scholar] [CrossRef]
- Smith, K.; Cockburn, J.M.H.; Villard, P.V. Rivers under ice: Evaluating simulated morphodynamics through a riffle-pool sequence. Water 2023, 15, 1604. [Google Scholar] [CrossRef]
- Mohammadian, A.; Morse, B.; Robert, J.-L. Numerical and experimental study of an Arctic hypertidal estuary under winter conditions: Cryo-hydrodynamics and hydrokinetic implications. In Proceedings of the 21st Workshop on the Hydraulics of Ice Covered Rivers, Saskatoon, SK, Canada, 29 August–1 September 2021. [Google Scholar]
- Shen, H.T. Mathematical modeling of river ice processes. Cold Reg. Sc. Tech. 2010, 62, 3–13. [Google Scholar] [CrossRef]
- Sun, Z.-C.; Shen, H.T. Field investigation of frazil ice jam in Yellow River. In Proceedings of the 5th Workshop on Hydraulics of River Ice/Ice Jam, Winnipeg, MB, Canada, 21–24 June 1988; pp. 157–175. [Google Scholar]
- Pawłowski, B. Internal structure and sources of selected ice jams on the lower Vistula River. Hydrol. Process 2016, 30, 4543–4555. [Google Scholar] [CrossRef]
- Shen, H.T.; Wang, D. Undercover transport and accumulation of frazil granules. J. Hydr. Eng. 1995, 121, 184–195. [Google Scholar] [CrossRef]
- Ikeda, S. Prediction of alternate bar wavelength and height. J. Hydr. Eng. 1984, 110, 371–386. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; Hoitink, A.J.F.; Mosselman, E. Field experiment on alternate bar development in a straight sand-bed stream. Water Resour. Res. 2013, 49, 8357–8369. [Google Scholar] [CrossRef]
- Crosato, A.; Desta, F.B.; Cornelisse, J.; Schuurman, F.; Uijttewaal, W.S. Experimental and numerical findings on the long-term evolution of migrating alternate bars in alluvial channels. Water Resour. Res. 2012, 48, 1–14. [Google Scholar] [CrossRef]
- Huang, F.; Knack, I.; Shen, H.T. Ice Effects on Bed Changes in Alluvial Channels. In Proceedings of the 22nd IAHR International Symposium on Ice, Singapore, 11–15 August 2014. [Google Scholar]
- Fu, H.; Guo, X.; Wang, T.; Guo, Y.; Li, J.; Pan, J. Dielectric constant of ice in natural rivers. J. Hydrol. 2022, 615, 12870. [Google Scholar] [CrossRef]
- Ashton, G.D. Deterioration of floating ice covers. J. Energy Res. Tech. 1985, 107, 177–182. [Google Scholar] [CrossRef]
- Dean, A.M., Jr. Remote Sensing of Accumulated Frazil Ice in the St. Lawrence River; CRREL Report 7708; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1977. [Google Scholar]
- Fu, H.; Liu, Z.; Guo, X.; Cui, H. Double-frequency ground penetrating radar for measurement of ice thickness and water depth in rivers and canals: Development, verification and application. Cold Reg. Sci. Tech. 2018, 154, 85–94. [Google Scholar] [CrossRef]
- Han, H.; Li, Y.; Li, W.; Liu, X.; Wang, E.; Jiang, H. The influence of the internal properties of river ice on Ground Penetrating Radar propagation. Water 2023, 15, 889. [Google Scholar] [CrossRef]
- Stott, T. Bed_load_Transport and channel bed changes in the Proglacial Skeldal River, Northeast Greenland. Arct. Antarct. Alp. Res. 2002, 34, 334–345. [Google Scholar] [CrossRef]
- Kempema, E.W.; Reimnitz, E.; Hunter, R.E. Flume Studies and Field Observations of the Interaction of Frazil Ice and Anchor Ice with Sediments; USGS Open-File Rep. 86-515; U.S. Geological Survey: Reston, VA, USA, 1986; 48p. [CrossRef]
- Reimnitz, E.; Clayton, J.R.; Kernpoma, E.W.; Payne, J.R.; Weber, W.S. Interaction of rising frazil with suspended particles: Tank experiments with applications to nature. Cold Reg. Sci. Tech. 1993, 21, 117–135. [Google Scholar] [CrossRef]
- Cook, S.J.; Knight, P.G.; Knight, D.A.; Waller, R.I. Laboratory observations of sediment entrainment by freezing supercooled water. Geogr. Ann. Ser. A Phys. Geogr. 2012, 94, 351–362. [Google Scholar] [CrossRef]
- Li, Y.-D. Sediment transport by ice runs. J. Sediment Res. 1987, 2, 84–90. (In Chinese) [Google Scholar]
- Pan, J.; Shen, H.T.; Jasek, M. Anchor ice effects on river hydraulics. Cold Regs. Sc. Tech. 2020, 174, 103062. [Google Scholar] [CrossRef]
- Hammar, L.; Kerr, D.J.; Shen, H.T.; Liu, L. Anchor ice formation in gravel-bedded channels. In Proceedings of the 13th IAHR Symposium on Ice, Beijing, China, 27–31 August 1996; pp. 843–850. [Google Scholar]
- Ettema, R.; Kempena, E.W. River-ice effects on gravel-bed channels. In Gravel-Bed Rivers: Processes, Tools, Environments; Church, M., Roy, A.G., Biron, P.M., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; Chapter 37; pp. 525–540. [Google Scholar] [CrossRef]
- Kalke, H.; McFarlane, V.; Schneck, C.; and Lowen, M. The transport of sediments by released anchor ice. Cold Reg. Sc. Tech. 2017, 143, 70–80. [Google Scholar] [CrossRef]
- Kempema, E.; Konrad, S.K. Anchor ice and water exchange in the hyporheic zone. In Proceedings of the 17th International Symposium on Ice, Saint Petersburg, Russia, 21–25 June 2004; pp. 251–257. [Google Scholar]
- Stickler, M.; Alfredsen, K.T. Anchor ice formation in streams: A field study. Hydrol. Proc. 2009, 23, 2307–2315. [Google Scholar] [CrossRef]
- Suzuki, H.; Hashiba, M.; Yoshikawa, Y.; Yokoyama, H. Field study of anchor ice occurrence and disappearance and material circulation in cold regions river. In Proceedings of the 24th IAHR Symposium on Ice, Vladivostok, Russia, 4–9 June 2018; pp. 296–303. [Google Scholar]
- Ghobrial, T.R.; Loewen, M.R. Continuous in situ measurements of anchor ice formation, growth and release. Cryosphere 2021, 15, 49–67. [Google Scholar] [CrossRef]
- Hondzo, M.; Stefan, H.G. Riverbed heat conduction prediction. Water Resour. Res. 1994, 30, 1503–1513. [Google Scholar] [CrossRef]
- Pan, J.; Shen, H.T. Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank. Int. J. Environ. Eco. Eng. 2021, 15, 176–182. [Google Scholar]
- Mohajeri, S.H.; Righetti, M.; Wharton, G.; Romano, G.P. On the structure of turbulent gravel bed flow: Implications for sediment transport. Adv. Water Res. 2016, 92, 90–104. [Google Scholar] [CrossRef]
- Lamb, M.P.; Brun, F.; Fuller, B.M. Hydrodynamics of steep streams with planar coarse-grained beds: Turbulence, flow resistance, and implications for sediment transport. Water Resour. Res. 2017, 53, 2240–2263. [Google Scholar] [CrossRef]
- Hodgkins, R.; Cooper, R.; Wadham, J.; Tranter, M. Suspended sediment fluxes in a high-Arctic glacierised catchment: Implications for fluvial sediment storage. Sediment. Geol. 2003, 162, 105–117. [Google Scholar] [CrossRef]
- Hasholt, B. The sediment budgets of Arctic drainage basins. Sediment Budgets 2. In Proceedings of the Symposium S1 Held During the Seventh IAHS Scientific Assembly, IAHS Publ. 292, Foz do Iguaçu, Brazil, 4–9 April 2005. [Google Scholar]
- Kirkham, J.D.; Hogan, K.A.; Larter, R.D.; Arnold, N.S.; Ely, J.C.; Clark, C.D.; Self, E.; Games, K.; Huuse, M.; Stewart, M.A.; et al. Tunnel valley formation beneath deglaciating mid-latitude ice sheets: Observations and modelling. Quat. Sci. Rev. 2024, 323, 107680. [Google Scholar] [CrossRef]
- Wada, T.; Chikita, K.A.; Kim, Y.; Kudo, I. Glacial effects on discharge and sediment load in the subarctic Tanana River Basin. Alaska. Arct. Antarct. Alp. Res. 2011, 43, 632–648. [Google Scholar] [CrossRef]
- Diodato, N.; Støren, E.W.N.; Bellocchi, G.; Nesje, A. Modelling sediment load in a glacial meltwater stream in western Norway. J. Hydrol. 2013, 12, 343–350. [Google Scholar] [CrossRef]
- Zajaczkowski, M.; Włodarska-Kowalczuk, M. Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard). I. Flux, deposition, and sediment dynamics, Estuarine. Coast. Shelf Sci. 2007, 74, 285–296. [Google Scholar] [CrossRef]
- Pan, J.; Shen, H.T. Modeling ice cover effect on river channel bank stability. Environ. Fluid Mechs. 2022, 22, 1121–1133. [Google Scholar] [CrossRef]
- Uunila, L.; Church, M. Ice on Peace River: Effects on Bank Morphology and Riparian Vegetation. In The Regulation of Peace River; Church, M., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 115–140. [Google Scholar] [CrossRef]
- Vandermause, R.; Harvey, M.; Zevenbergen, L.; Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna River, Alaska. Cold Reg. Sci. Technol. 2021, 185, 103239. [Google Scholar] [CrossRef]
- Prowse, T.D. Suspended sediment concentration during breakup. Can. J. Civ. Eng. 1993, 20, 872–875. [Google Scholar] [CrossRef]
- Beltaos, S.; Burrell, B.C. Effects of river-ice breakup on sediment transport and implications to stream environments: A review. Water 2021, 13, 2541. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, F.; Zhang, M.; Lei, B. Effects of seasonal rainfall variations on the hydrothermal state and thermal stability of the permafrost active layer in the central Qinghai-Tibet Plateau of Chian. Cold Regions Sci. Tech. 2023, 214, 103945. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wang, X.; Ming, F. Heat and moisture transport characteristics in permafrost embankment under seasonal rainfall. Front. Earth Sci. 2024, 12, 1442576. [Google Scholar] [CrossRef]
- Zhang, T.; Li, D.; East, A.E.; Walling, D.E.; Lane, S.; Overeem, I.; Beylich, A.A.; Koppes, M.; Lu, X. Review warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 2022, 3, 832–851. [Google Scholar] [CrossRef]
- Bai, Q.; Zhou, L.; Fan, H.; Huang, D.; Yang, D.; Liu, H. Effects of frozen layer on composite erosion of snowmelt and rainfall in the typical black soil of northeast China. Water 2024, 16, 2131. [Google Scholar] [CrossRef]
- Anderson, D.M.; Pusch, R.; Penner, E. Physical and thermal properties of frozen ground. In Geotechnical Engineering for Cold Regions; Andersland, O.B., Anderson, D.M., Eds.; McGraw-Hill Book Co.: New York, NY, USA, 1978; Chapter 2; pp. 37–102. [Google Scholar]
- Gatto, L.W. Soil Freeze-Thaw Effects on Bank Erodibility and Stability; Special Report 95-24; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1995; 24p. [Google Scholar]
- Gatto, L.W.; Halvorson, J.J.; McCool, D.K.; Palazzo, A.J. Effects of freeze-thaw cycling on soil erosion. In Landscape Erosion and Evolution Modeling; Harmon, R.S., Doe, W.W., III, Eds.; Kluwer Academic/Plenum Publisher: New York, NY, USA, 2001; Chapter 3; pp. 29–55. [Google Scholar]
- Ferrick, M.G.; Gatto, L.W. Quantifying the effect of a freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Yumoto, M.; Ogata, T.; Matsuoka, N.; Matsumoto, E. Riverbank freeze-thaw erosion along a small mountain stream, Nikko volcanic area, central Japan. Permafr. Periglac. Proc. 2006, 17, 325–339. [Google Scholar] [CrossRef]
- Li, C.; Yang, Z.; Shen, H.T.; Mou, X. Freeze-thaw effect on riverbank stability. Water 2022, 14, 2479. [Google Scholar] [CrossRef]
- Darby, S.E.; Thorne, C.R. Development and testing of riverbank-stability analysis. J. Hydr. Eng. 1996, 122, 443–454. [Google Scholar] [CrossRef]
- Xia, J.Q.; Zong, Q.L. Mechanism of Bank Failure in Jingjiang Section of Yangtze River and Its Numerical Simulation; Science Press: Beijing, China, 2015; pp. 155–167. (In Chinese) [Google Scholar]
- Lotsari, E.; Hackney, C.; Salmela, J.; Kasvi, E.; Kemp, J.; Alho, P.; Darby, S.E. Sub-arctic river bank dynamics and driving processes during the open-channel flow period. Earth Surf. Procs. Landf. 2020, 45, 1198–1216. [Google Scholar] [CrossRef]
- Ielpi, A.; Lapôtre, M.; Finotello, A.; Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Change 2023, 13, 375–381. [Google Scholar] [CrossRef]
- Douglas, M.M.; Miller, K.L.; Schmeer, M.N.; Lamb, M.P. Ablation-limited erosion rates of permafrost riverbanks. J. Geophys. Res.: Earth Surf. 2023, 128, e2023JF007098. [Google Scholar] [CrossRef]
- Zheng, L.; Overeem, I.; Wang, K.; Clow, G.D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophy. Res. Earth Surf. 2019, 124, 2324–2344. [Google Scholar] [CrossRef]
- Clow, G.D. CVPM 1.1: A flexible heat-transfer modeling system for permafrost. Geosci. Model Dev. 2018, 11, 4889–4908. [Google Scholar] [CrossRef]
- Clow, G.D. CVPM Version 1.1 Modeling System User’s Guide; Institute of Arctic and Alpine Research, University of Colorado: Boulder, CO, USA, 2018. [Google Scholar]
- Douglas, M.M.; Lamb, M.P. A model for thaw and erosion of permafrost riverbanks. J. Geophy. Res. Earth Surf. 2024, 129, e2023JF007452. [Google Scholar] [CrossRef]
- Peng, E.; Hu, X.; Sheng, Y.; Zhou, F.; Wu, J.; Cao, W. Establishment and verification of a thermal calculation model considering internal heat transfer of accumulated water in permafrost regions. Front. Earth Sci. 2021, 9, 733483. [Google Scholar] [CrossRef]
- Huang, W.; Mao, X.; Wu, Q.; Chen, L. Experimental study on shear characteristics of the silty clay soil-ice interface. Sci. Rep. 2022, 12, 19687. [Google Scholar] [CrossRef]
- Chai, M.; Luo, Y.; Gao, Y.; Ma, W.; Mu, Y. Seepage influence of suprapermafrost groundwater on thermal/temperature field of embankment on Qinghai-Tibet Plateau, China. Res. Cold Arid. Reg. 2023, 15, 132–140. [Google Scholar] [CrossRef]
- Tai, B.-W.; Wu, Q.-B.; Xu, X.-M. Thermal and hydrological processes in permafrost slope wetlands affect thermosyphon embankment stability. Adv. Clim. Change Res. 2024, 15, 680–694. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.T. River Ice Effects on Sediment Transport and Channel Morphology—Progress and Research Needs. Glacies 2025, 2, 2. https://doi.org/10.3390/glacies2010002
Shen HT. River Ice Effects on Sediment Transport and Channel Morphology—Progress and Research Needs. Glacies. 2025; 2(1):2. https://doi.org/10.3390/glacies2010002
Chicago/Turabian StyleShen, Hung Tao. 2025. "River Ice Effects on Sediment Transport and Channel Morphology—Progress and Research Needs" Glacies 2, no. 1: 2. https://doi.org/10.3390/glacies2010002
APA StyleShen, H. T. (2025). River Ice Effects on Sediment Transport and Channel Morphology—Progress and Research Needs. Glacies, 2(1), 2. https://doi.org/10.3390/glacies2010002