Coal Quality Analysis Based on Laser-Induced Breakdown Spectroscopy
Abstract
1. Introduction
2. Experimental Setup
3. Materials and Methods
3.1. Sample Preparation
3.2. Spectral Preprocessing
3.2.1. Background Spectrum Removal
3.2.2. Data Cleaning
3.2.3. Normalized De-Basing
3.3. Partial Least Squares Regression (PLSR)
3.4. Evaluation Parameters
4. Results
4.1. Selection of Spectral Peaks in LIBS Data
4.2. Comparison of Predicted Carbon and Sulfur Contents
4.3. Handling of Ash Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelazeem, R.M.; Salam, Z.A.; Harith, M.A. Differentiating between normal and inflammatory blood serum samples using spectrochemical analytical techniques and chemometrics. Anal. Bioanal. Chem. 2025, 417, 2133–2142. [Google Scholar] [CrossRef]
- Pokrajac, D.; Lazarevic, A.; Kecman, V.; Marcano, A.; Markushin, Y.; Vance, T.; Reljin, N.; McDaniel, S.; Melikechi, N. Automatic Classification of Laser-Induced Breakdown Spectroscopy (LIBS) Data of Protein Biomarker Solutions. Appl. Spectrosc. 2014, 68, 1067–1075. [Google Scholar] [CrossRef]
- Diedrich, J.; Rehse, S.J.; Palchaudhuri, S. Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy. J. Appl. Phys. 2007, 102, 6184. [Google Scholar] [CrossRef]
- Samek, O.; Beddows, D.C.S.; Telle, H.H.; Morris, G.W.; Liska, M.; Kaiser, J. Quantitative analysis of trace metal accumulation in teeth using Laser-Induced Breakdown Spectroscopy. Appl. Phys. A 1999, 69, S179–S182. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Li, X.; Yang, Z.; Liu, A.; Yu, X. Diagnosis and staging of multiple myeloma using serum-based laser-induced breakdown spectroscopy combined with machine learning methods. Biomed. Opt. Express 2021, 12, 3584–3596. [Google Scholar] [CrossRef] [PubMed]
- Dyar, M.D.; Carmosino, M.L.; Breves, E.A.; Ozanne, M.V.; Clegg, S.M.; Wiens, R.C. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples. Spectrochim. Acta Part B At. Spectrosc. 2012, 70, 51–67. [Google Scholar] [CrossRef]
- Portnov, A.; Rosenwaks, S.; Bar, I. Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl. Opt. 2003, 42, 2835–2842. [Google Scholar] [CrossRef]
- Bousquet, B.; Travaillé, G.; Ismaël, A.; Canioni, L.; Michel-Le Pierrès, K.; Brasseur, E.; Roy, S.; le Hecho, I.; Larregieu, M.; Tellier, S.; et al. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1085–1090. [Google Scholar] [CrossRef]
- Arp, Z.A.; Cremers, D.A.; Wiens, R.C.; Wayne, D.M.; Sallé, B.A.; Maurice, S. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: Application to Mars polar exploration. Appl. Spectrosc. 2004, 58, 897–909. [Google Scholar] [CrossRef]
- Lanza, N.L.; Wiens, R.C.; Clegg, S.M.; Ollila, A.M.; Humphries, S.D.; Newsom, H.E.; Barefield, J.E. Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars. Appl. Opt. 2010, 49, C211–C217. [Google Scholar] [CrossRef]
- Sallé, B.; Lacour, J.L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers, D.A.; Wiens, R.C. Laser-Induced Breakdown Spectroscopy for Mars surface analysis: Capabilities at stand-off distances and detection of chlorine and sulfur elements. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1413–1422. [Google Scholar] [CrossRef]
- Tzortzakis, S.; Anglos, D.; Gray, D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: Applications in cultural heritage monitoring. Opt. Lett. 2006, 31, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Giakoumaki, A.; Melessanaki, K.; Anglos, D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects. Anal. Bioanal. Chem. 2007, 387, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Fortes, F.J.; Ctvrtnícková, T.; Mateo, M.P.; Cabalín, L.M.; Nicolas, G.; Laserna, J.J. Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy. Anal. Chim. Acta 2010, 683, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Myakalwar, A.K.; Sreedhar, S.; Barman, I.; Dingari, N.C.; Rao, S.V.; Kiran, P.P.; Tewari, S.P.; Kumar, G.M. Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis. Talanta 2011, 87, 53–59. [Google Scholar] [CrossRef]
- Zhang, T.L.; Wu, S.; Tang, H.S.; Wang, K.; Duan, Y.X.; Li, H. Progress of Chemometrics in Laser-induced Breakdown Spectroscopy Analysis. Chin. J. Anal. Chem. 2015, 43, 939–948. [Google Scholar] [CrossRef]
- Parmar, D.; Srivastava, R.; Baruah, P.K. Laser induced breakdown spectroscopy: A robust technique for the detection of trace metals in water. Mater. Today 2023, 77, 234–239. [Google Scholar] [CrossRef]
- Ciucci, A.; Palleschi, V.; Rastelli, S.; Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo, S.; van der Steen, H.J.L. Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique. Appl. Phys. B 1996, 63, 185–190. [Google Scholar] [CrossRef]
- Bousquet, B.; Sirven, J.B.; Canioni, L. Towards quantitative laser-induced breakdown spectroscopy analysis of soil sample. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1582–1589. [Google Scholar] [CrossRef]
- Martin, M.Z.; Wullschleger, S.D.; Garten, C.T.; Palumbo, A.V. Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Appl. Opt. 2003, 42, 2072–2077. [Google Scholar] [CrossRef]
- Eppler, A.S.; Cremers, D.A.; Hickmott, D.D.; Ferris, M.J.; Koskelo, A.C. Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 1996, 50, 1175–1181. [Google Scholar] [CrossRef]
- Legnaioli, S.; Campanella, B.; Pagnotta, S.; Poggialini, F.; Palleschi, V. Determination of Ash Content of coal by Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 155, 123–126. [Google Scholar] [CrossRef]
- Qian, Y.; Zhong, S.; He, Y.; Whiddon, R.; Wang, Z.H.; Cen, K.F. Effects of Laser Wavelength on Properties of Coal LIBS Spectrum. Spectrosc. Spectr. Anal. 2017, 37, 1890–1895. [Google Scholar]
- Kim, C.K.; In, J.H.; Lee, S.H.; Jeong, S. Independence of elemental intensity ratio on plasma property during laser-induced breakdown spectroscopy. Opt. Lett. 2013, 38, 3032–3035. [Google Scholar] [CrossRef]
- Agrawal, N.; Govil, H. A deep residual convolutional neural network for mineral classification. Adv. Space Res. 2023, 71, 3186–3202. [Google Scholar] [CrossRef]
- Guan, F.Y.; Liu, Y.C.; Niu, X.C.; Huang, W.H.; Li, W.; Zheng, P.C.; Zhang, D.; Xu, G.; Guo, L.B. AI-enabled universal image-spectrum fusion spectroscopy based on self-supervised plasma modeling. Adv. Photonics Nexus 2024, 3, 127–139. [Google Scholar] [CrossRef]
- Azmat, F.; Chen, Y.F.; Stocks, N. Analysis of Spectrum Occupancy Using Machine Learning Algorithms. IEEE Trans. Veh. Technol. 2016, 65, 6853–6860. [Google Scholar] [CrossRef]
- Kurose, R.; Ikeda, M.; Makino, H. Combustion characteristics of high ash coal in a pulverized coal combustion. Fuel 2001, 80, 1447–1455. [Google Scholar] [CrossRef]
- Selçuk, N.; Gogebakan, Y.; Gogebakan, Z. Partitioning behavior of trace elements during pilot-scale fluidized bed combustion of high ash content lignite. J. Hazard. Mater. 2006, 137, 1698–1703. [Google Scholar] [CrossRef]
- Lee, M.G.; Yi, G.; Ahn, B.J.; Roddick, F. Conversion of Coal Fly Ash into Zeolite and Heavy Metal Removal Characteristics of the Products. Korean J. Chem. Eng 2000, 17, 325–331. [Google Scholar] [CrossRef]
- Haykiri-Açma, H.; Ersoy-Meriçboyu, A.; Küçükbayrak, S. Combustion reactivity of different rank coals. Energy Convers. Manag. 2002, 43, 0196–8904. [Google Scholar] [CrossRef]
- Levine, D.G.; Schlosberg, R.H.; Silbernagel, B.G. Understanding the chemistry and physics of coal structure (A Review). Proc. Natl. Acad. Sci. USA 1982, 79, 3365–3370. [Google Scholar] [CrossRef]
- Liu, K.; He, C.; Zhu, C.W.; Chen, J.; Zhan, K.P.; Li, X.Y. A review of laser-induced breakdown spectroscopy for coal analysis. Trends Anal. Chem. 2021, 143, 116357. [Google Scholar] [CrossRef]
- Jin, H.Y.; Hao, X.J.; Yang, Y.W. Laser-induced breakdown spectroscopy combined with principal component analysis-based support vector machine for rapid classification of coal from different mining areas. Optik 2023, 286, 170990. [Google Scholar] [CrossRef]
- Yao, S.C.; Xu, J.L.; Dong, X.; Zhang, B.; Zheng, J.P.; Lu, J.D. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters. Spectrochim. Acta Part B At. Spectrosc. 2015, 110, 146–150. [Google Scholar] [CrossRef]
- Yan, C.H.; Qi, J.; Ma, J.X.; Tang, H.S.; Zhang, T.L.; Li, H. Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernel-based extreme learning machine. Chemom. Intell. Lab. Syst. 2017, 167, 226–231. [Google Scholar] [CrossRef]
- Wold, S.; Ruhe, A.; Wold, H.; Dunn, I.W.J. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J. Sci. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef]
- Liu, J.M.; Wu, D.; Fu, C.L.; Hai, R.; Yu, X.; Sun, L.Y.; Ding, H.B. Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments. Plasma Sci. Technol. 2019, 21, 034017. [Google Scholar] [CrossRef]














| No. | Aad (wt.%) | Cd (mg/kg) | Stad (mg/kg) | No. | Aad (wt.%) | Cd (mg/kg) | Stad (mg/kg) |
|---|---|---|---|---|---|---|---|
| 1 | 25.62 | 62.67 | 0.79 | 43 | 25.63 | 62.47 | 0.64 |
| 2 | 25.49 | 62.42 | 0.70 | 44 | 25.20 | 61.98 | 0.60 |
| 3 | 25.44 | 64.30 | 0.86 | 45 | 27.40 | 60.24 | 0.63 |
| 4 | 23.94 | 65.20 | 0.62 | 46 | 29.66 | 59.78 | 1.09 |
| 5 | 26.07 | 63.95 | 0.70 | 47 | 28.66 | 60.72 | 1.02 |
| 6 | 27.27 | 63.71 | 0.71 | 48 | 26.64 | 61.59 | 1.06 |
| 7 | 25.92 | 62.79 | 0.66 | 49 | 24.82 | 64.94 | 0.62 |
| 8 | 27.64 | 62.36 | 0.72 | 50 | 25.92 | 63.67 | 0.90 |
| 9 | 30.04 | 59.27 | 0.69 | 51 | 25.74 | 63.34 | 0.86 |
| 10 | 28.71 | 61.30 | 0.70 | 52 | 29.72 | 60.36 | 0.86 |
| 11 | 29.19 | 60.74 | 0.53 | 53 | 27.02 | 62.51 | 0.84 |
| 12 | 32.64 | 62.92 | 0.86 | 54 | 26.76 | 62.13 | 0.94 |
| 13 | 29.83 | 64.06 | 0.65 | 55 | 29.66 | 59.09 | 0.78 |
| 14 | 29.34 | 59.29 | 0.70 | 56 | 30.41 | 58.78 | 0.82 |
| 15 | 33.48 | 55.37 | 0.66 | 57 | 32.68 | 56.85 | 0.98 |
| 16 | 28.40 | 61.32 | 0.82 | 58 | 33.86 | 56.60 | 1.03 |
| 17 | 30.64 | 57.61 | 0.60 | 59 | 31.51 | 57.63 | 0.82 |
| 18 | 27.00 | 62.75 | 0.75 | 60 | 32.09 | 56.72 | 0.90 |
| 19 | 24.82 | 63.25 | 0.74 | 61 | 29.71 | 58.60 | 1.10 |
| 20 | 27.22 | 62.29 | 0.92 | 62 | 29.72 | 58.63 | 1.00 |
| 21 | 28.88 | 60.92 | 0.67 | 63 | 27.36 | 61.60 | 0.74 |
| 22 | 29.17 | 60.09 | 0.58 | 64 | 24.23 | 62.53 | 1.12 |
| 23 | 29.79 | 62.13 | 0.66 | 65 | 27.77 | 61.63 | 0.74 |
| 24 | 27.14 | 62.58 | 0.64 | 66 | 31.43 | 58.10 | 1.10 |
| 25 | 28.88 | 60.31 | 0.62 | 67 | 29.97 | 60.00 | 0.94 |
| 26 | 29.44 | 60.94 | 0.62 | 68 | 28.85 | 60.55 | 0.72 |
| 27 | 29.14 | 59.37 | 0.72 | 69 | 32.02 | 58.46 | 1.12 |
| 28 | 27.86 | 62.41 | 0.73 | 70 | 30.78 | 61.56 | 0.98 |
| 29 | 27.02 | 63.45 | 0.59 | 71 | 29.86 | 60.39 | 0.96 |
| 30 | 25.52 | 65.03 | 0.64 | 72 | 26.90 | 62.42 | 0.84 |
| 31 | 26.20 | 63.60 | 0.50 | 73 | 27.84 | 61.29 | 1.02 |
| 32 | 29.16 | 60.89 | 0.70 | 74 | 27.60 | 63.14 | 0.87 |
| 33 | 24.32 | 63.87 | 0.60 | 75 | 30.62 | 58.60 | 0.98 |
| 34 | 23.10 | 66.04 | 0.74 | 76 | 28.92 | 60.20 | 0.88 |
| 35 | 27.36 | 63.40 | 0.52 | 77 | 27.36 | 63.08 | 0.66 |
| 36 | 22.92 | 64.37 | 0.58 | 78 | 29.77 | 58.93 | 0.88 |
| 37 | 21.26 | 64.59 | 0.63 | 79 | 33.10 | 56.42 | 1.03 |
| 38 | 21.20 | 65.73 | 0.54 | 80 | 26.10 | 62.53 | 0.78 |
| 39 | 23.80 | 64.41 | 0.52 | 81 | 28.21 | 61.51 | 0.86 |
| 40 | 24.29 | 63.02 | 0.58 | 82 | 25.90 | 62.74 | 0.82 |
| 41 | 23.54 | 63.89 | 0.58 | 83 | 29.50 | 58.24 | 0.84 |
| 42 | 23.64 | 62.17 | 0.58 |
| Element | n_Components |
|---|---|
| Aad | 5 |
| Cd | 6 |
| Stad | 5 |
| Element | Wavelength (nm) |
|---|---|
| Ash | K 310.46, Ti 308.37, Zn 212.52, Na 280.97, Si 288.16, Ca 393.50, Ca 396.88, Fe 344.12, Na 313.14, Mg 299.28, CN 387.17, Si 390.70, Si 251.65, N 742.59, Fe 407.90, Fe 404.68, Ti 338.47, Ti 338.92, Ti 430.75, Ti 512.98, Li 670.92, H 656.35, O 616.28, O 764.96, Fe 610.41, N 744.46, N 747.00 |
| C | 192.8, 247.89, 283.82, 589.11 |
| S | 415.24, 550.24, 563.58 |
| Element Assessment | Stad | S After Optimization | Cd | C After Optimization |
|---|---|---|---|---|
| 0.86 | 0.90 | 0.84 | 0.86 | |
| RMSECV | 0.0062 | 0.00258 | 2.1282 | 2.2501 |
| RMSEP | 0.0041 | 0.0030 | 1.3852 | 1.1908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zaheer Ud Din, S.; Dang, C.; Kong, X.; Ma, R.; Ning, J.; Fu, G.; Leng, J.; Zhang, W. Coal Quality Analysis Based on Laser-Induced Breakdown Spectroscopy. Spectrosc. J. 2025, 3, 32. https://doi.org/10.3390/spectroscj3040032
Zhang R, Zaheer Ud Din S, Dang C, Kong X, Ma R, Ning J, Fu G, Leng J, Zhang W. Coal Quality Analysis Based on Laser-Induced Breakdown Spectroscopy. Spectroscopy Journal. 2025; 3(4):32. https://doi.org/10.3390/spectroscj3040032
Chicago/Turabian StyleZhang, Rongzhou, Syed Zaheer Ud Din, Chunling Dang, Xiangming Kong, Rongxin Ma, Jianli Ning, Guangtao Fu, Jiancai Leng, and Wenhao Zhang. 2025. "Coal Quality Analysis Based on Laser-Induced Breakdown Spectroscopy" Spectroscopy Journal 3, no. 4: 32. https://doi.org/10.3390/spectroscj3040032
APA StyleZhang, R., Zaheer Ud Din, S., Dang, C., Kong, X., Ma, R., Ning, J., Fu, G., Leng, J., & Zhang, W. (2025). Coal Quality Analysis Based on Laser-Induced Breakdown Spectroscopy. Spectroscopy Journal, 3(4), 32. https://doi.org/10.3390/spectroscj3040032

