Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials Properties and Specimens Preparation
2.1.1. Binder Mixture
2.1.2. Coarse and Fine Aggregates
2.1.3. Lime-Concrete Design and Specimen Preparation
2.2. Experimental Methods
2.2.1. Morphological Analysis of the Aggregates
2.2.2. TGA-MSEGA
2.2.3. Demolded, Air-Dry, and Oven-Dry Densities
2.2.4. Mechanical Test
2.2.5. Thermal Conductivity of Lime-Concrete Specimens
3. Results and Discussion
3.1. Lightweight Aggregates
3.2. Morphological Analysis of the Aggregates
3.3. TG-MS-EGA Analysis
3.4. Density and Compressive Strength of the Lime-Based Concrete
3.5. Thermal Insulating Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dulias, R. The Impact of Mining on the Landscape: A Study of the Upper Silesian Coal Basin in Poland, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Arendt, R.; Bach, V.; Finkbeiner, M. The Global Environmental Costs of Mining and Processing Abiotic Raw Materials and Their Geographic Distribution. J. Clean. Prod. 2022, 361, 132232. [Google Scholar] [CrossRef]
- Krausmann, F.; Lauk, C.; Haas, W.; Wiedenhofer, D. From Resource Extraction to Outflows of Wastes and Emissions: The Socioeconomic Metabolism of the Global Economy, 1900–2015. Glob. Environ. Change 2018, 52, 131–140. [Google Scholar] [CrossRef]
- Benton, D.; Hazell, J. Resource Resilient UK: A Report from the Circular Economy Task Force; Green Alliance: London, UK, 2013; Available online: https://green-alliance.org.uk/wp-content/uploads/2021/11/Resource-resilient-UK.pdf (accessed on 25 November 2022).
- Ecorys Mapping Resurce Prices: The Past and the Future; Ecorys: Rotterdam, The Netherlands, 2012.
- MacArthur Foundation; McKinsey & Company. Towards the Circular Economy: Accelerating the Scale-Up Across Global Supply Chains. Available online: http://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf (accessed on 25 November 2022).
- Pratt, K.; Lenaghan, M. The Carbon Impacts of the Circular Economy Summary Report; Zero Waste Scotland: Stirling, UK, 2015. [Google Scholar]
- EEA (European Environment Agency). Circular Economy in Europe Developing the Knowledge Base; Eur. Environ. Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- Morgan, J.; Mitchell, P. Employment and the Circular Economy: Job Creation in a More Resource Efficient Britain; Green Alliance: London, UK, 2015; Available online: http://www.green-alliance.org.uk/resources/Employment (accessed on 26 November 2022).
- Spence, R.; Mulligan, H. Sustainable Development and the Construction Industry. Habitat Int. 1995, 19, 279–292. [Google Scholar] [CrossRef]
- Curwell, S.; Cooper, I. The Implications of Urban Sustainability. Build. Res. Inf. 1998, 26, 17–28. [Google Scholar] [CrossRef]
- Wieser, A.A.; Scherz, M.; Maier, S.; Passer, A.; Kreiner, H. Implementation of Sustainable Development Goals in Construction Industry—A Systemic Consideration of Synergies and Trade-Offs. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012177. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Peris Mora, E. Life Cycle, Sustainability and the Transcendent Quality of Building Materials. Build. Environ. 2007, 42, 1329–1334. [Google Scholar] [CrossRef]
- Mehta, K.P. Reducing the Environmental Impact of Concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- Real, S.; Gomes, M.G.; Moret Rodrigues, A.; Bogas, J.A. Contribution of Structural Lightweight Aggregate Concrete to the Reduction of Thermal Bridging Effect in Buildings. Constr. Build. Mater. 2016, 121, 460–470. [Google Scholar] [CrossRef]
- Sala, E.; Zanotti, C.; Passoni, C.; Marini, A. Lightweight Natural Lime Composites for Rehabilitation of Historical Heritage. Constr. Build. Mater. 2016, 125, 81–93. [Google Scholar] [CrossRef]
- Carran, D.; Hughes, J.; Leslie, A.; Kennedy, C. A Short History of the Use of Lime as a Building Material Beyond Europe and North America. Int. J. Archit. Herit. 2012, 6, 117–146. [Google Scholar] [CrossRef]
- Elert, K.; Rodriguez-Navarro, C.; Pardo, E.S.; Hansen, E.; Cazalla, O. Lime Mortars for the Conservation of Historic Buildings. Stud. Conserv. 2002, 47, 62–75. [Google Scholar] [CrossRef]
- Boynton, R.S. Chemistry and Technology of Lime and Limestone, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Saberian, M.; Jahandari, S.; Li, J.; Zivari, F. Effect of Curing, Capillary Action, and Groundwater Level Increment on Geotechnical Properties of Lime Concrete: Experimental and Prediction Studies. J. Rock Mech. Geotech. Eng. 2017, 9, 638–647. [Google Scholar] [CrossRef]
- Bevan, R.; Woolley, T. Hemp Lime Construction; IHS/BRE Press: Bracknell, Berkshire, UK, 2008. [Google Scholar]
- Pelentir, N.; Block, J.M.; Monteiro Fritz, A.R.; Reginatto, V.; Amante, E.R. Production and Chemical Characterization of Peach (Prunus Persica) Kernel Flour: Characterization of Peach Kernel Flour. J. Food Process Eng. 2011, 34, 1253–1265. [Google Scholar] [CrossRef]
- Rodriguez, C.E.; Bustamante, C.A.; Budde, C.O.; Müller, G.L.; Drincovich, M.F.; Lara, M.V. Peach Fruit Development: A Comparative Proteomic Study Between Endocarp and Mesocarp at Very Early Stages Underpins the Main Differential Biochemical Processes Between These Tissues. Front. Plant Sci. 2019, 10, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Identifying Peach and Plum Polyphenols with Chemopreventive Potential against Estrogen-Independent Breast Cancer Cells. J. Agric. Food Chem. 2009, 57, 5219–5226. [Google Scholar] [CrossRef] [PubMed]
- Vizzotto, M.; Cisneros-Zevallos, L.; Byrne, D.H.; Ramming, D.W.; Okie, W.R. Large Variation Found in the Phytochemical and Antioxidant Activity of Peach and Plum Germplasm. J. Am. Soc. Hortic. Sci. 2007, 132, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Chun, O.K.; Kim, D.-O.; Moon, H.Y.; Kang, H.G.; Lee, C.Y. Contribution of Individual Polyphenolics to Total Antioxidant Capacity of Plums. J. Agric. Food Chem. 2003, 51, 7240–7245. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant Capacities, Phenolic Compounds, Carotenoids, and Vitamin C Contents of Nectarine, Peach, and Plum Cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef] [PubMed]
- Radi, M.; Mahrouz, M.; Jaouad, A.; Tacchini, M.; Aubert, S.; Hugues, M.; Amiot, M.J. Phenolic Composition, Browning Susceptibility, and Carotenoid Content of Several Apricot Cultivars at Maturity. HortScience 1997, 32, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the Antioxidant Biocompound Recovery from Peach Waste Extraction Assisted by Ultrasounds or Microwaves. Ultrason. Sonochem. 2020, 63, 104954. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, A.; Molina, J.; Cayumil, R.; Núñez Decap, M.; Ballerini-Arroyo, A. Some Properties of Composite Panels Manufactured from Peach (Prunus Persica) Pits and Polypropylene. Compos. Part B Eng. 2019, 175, 107152. [Google Scholar] [CrossRef]
- Kambis, A.D.; Levine, J.S. Biomass Burning and the Production of Carbon Dioxide: Numerical Study. In Biomass Burning and Global Change Volume 1: Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Duc, P.A.; Dharanipriya, P.; Velmurugan, B.K.; Shanmugavadivu, M. Groundnut Shell -a Beneficial Bio-Waste. Biocatal. Agric. Biotechnol. 2019, 20, 101206. [Google Scholar] [CrossRef]
- Zheng, W.; Phoungthong, K.; Lü, F.; Shao, L.-M.; He, P.-J. Evaluation of a Classification Method for Biodegradable Solid Wastes Using Anaerobic Degradation Parameters. Waste Manag. 2013, 33, 2632–2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traore, Y.B.; Messan, A.; Hannawi, K.; Gerard, J.; Prince, W.; Tsobnang, F. Effect of Oil Palm Shell Treatment on the Physical and Mechanical Properties of Lightweight Concrete. Constr. Build. Mater. 2018, 161, 452–460. [Google Scholar] [CrossRef]
- Wu, F.; Liu, C.; Zhang, L.; Lu, Y.; Ma, Y. Comparative Study of Carbonized Peach Shell and Carbonized Apricot Shell to Improve the Performance of Lightweight Concrete. Constr. Build. Mater. 2018, 188, 758–771. [Google Scholar] [CrossRef]
- Adefemi, A.; Nensok, M.; Kaase, E.T.; Wuna, I.A. Exploratory Study of Date Seed as Coarse Aggregate in Concrete Production. Civ. Environ. Res. 2013, 3, 85–92. [Google Scholar]
- Wu, F.; Liu, C.; Sun, W.; Ma, Y.; Zhang, L. Effect of Peach Shell as Lightweight Aggregate on Mechanics and Creep Properties of Concrete. Eur. J. Environ. Civ. Eng. 2020, 24, 2534–2552. [Google Scholar] [CrossRef]
- Wu, F.; Liu, C.; Sun, W.; Zhang, L. Mechanical Properties of Bio-Based Concrete Containing Blended Peach Shell and Apricot Shell Waste. Mater. Tehnol. 2018, 52, 645–651. [Google Scholar] [CrossRef]
- Wu, F.; Liu, C.; Sun, W.; Zhang, L.; Ma, Y. Mechanical and Creep Properties of Concrete Containing Apricot Shell Lightweight Aggregate. KSCE J. Civ. Eng. 2019, 23, 2948–2957. [Google Scholar] [CrossRef]
- Ahmad, J.; Zaid, O.; Aslam, F.; Shahzaib, M.; Ullah, R.; Alabduljabbar, H.; Khedher, K.M. A Study on the Mechanical Characteristics of Glass and Nylon Fiber Reinforced Peach Shell Lightweight Concrete. Materials 2021, 14, 4488. [Google Scholar] [CrossRef]
- Blasi, C.D.; Galgano, A.; Branca, C. Exothermic Events of Nut Shell and Fruit Stone Pyrolysis. ACS Sustain. Chem. Eng. 2019, 7, 9035–9049. [Google Scholar] [CrossRef]
- Wei, L.; Xu, S.; Zhang, L.; Zhang, H.; Liu, C.; Zhu, H.; Liu, S. Characteristics of Fast Pyrolysis of Biomass in a Free Fall Reactor. Fuel Process. Technol. 2006, 87, 863–871. [Google Scholar] [CrossRef]
- Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of Hemicellulose, Cellulose and Lignin to the Mass and the Porous Properties of Chars and Steam Activated Carbons from Various Lignocellulosic Precursors. Bioresour. Technol. 2009, 100, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Associataion of Official Analytical Chemist. AOAC Official Methods of Analysis of the Association of Official’s Analytical Chemists, 14th ed.; Associataion of Official Analytical Chemist: Washington, DC, USA, 1990; pp. 223–225, 992–995. [Google Scholar]
- Maletti, L.; D’Eusanio, V.; Durante, C.; Marchetti, A.; Tassi, L. VOCs Analysis of Three Different Cultivars of Watermelon (Citrullus lanatus L.) Whole Dietary Fiber. Molecules 2022, 27, 8747. [Google Scholar] [CrossRef] [PubMed]
- ASTM C567; Standard Test Method for Determining Density of Structural Lightweight Concrete. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- European Committee for Concrete (CEB); International Federation for Prestressing (FIP). Manual of Design and Technology, Lightweight Aggregate Concrete; Construction Press: Lancaster, UK, 1977. [Google Scholar]
- Palomar, I.; Barluenga, G.; Puentes, J. Lime–Cement Mortars for Coating with Improved Thermal and Acoustic Performance. Constr. Build. Mater. 2015, 75, 306–314. [Google Scholar] [CrossRef]
- Silva, L.M.; Ribeiro, R.A.; Labrincha, J.A.; Ferreira, V.M. Role of Lightweight Fillers on the Properties of a Mixed-Binder Mortar. Cem. Concr. Compos. 2010, 32, 19–24. [Google Scholar] [CrossRef]
- Lo, T.Y.; Tang, W.C.; Cui, H.Z. The Effects of Aggregate Properties on Lightweight Concrete. Build. Environ. 2007, 42, 3025–3029. [Google Scholar] [CrossRef]
- Mohamed, A.R.; Mohammadi, M.; Darzi, G.N. Preparation of Carbon Molecular Sieve from Lignocellulosic Biomass: A Review. Renew. Sustain. Energy Rev. 2010, 14, 1591–1599. [Google Scholar] [CrossRef]
- Bajpai, P. Wood and Fiber Fundamentals. In Biermann’s Handbook of Pulp and Paper; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Watkins, D.; Nuruddin, M.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and Characterization of Lignin from Different Biomass Resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Carrott, P.J.M.; Carrott, M.R. Lignin—From Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol. 2007, 98, 2301–2312. [Google Scholar] [CrossRef]
- González Martínez, M.; Anca Couce, A.; Dupont, C.; da Silva Perez, D.; Thiéry, S.; Meyer, X.; Gourdon, C. Torrefaction of Cellulose, Hemicelluloses and Lignin Extracted from Woody and Agricultural Biomass in TGA-GC/MS: Linking Production Profiles of Volatile Species to Biomass Type and Macromolecular Composition. Ind. Crops Prod. 2022, 176, 114350. [Google Scholar] [CrossRef]
- Johnson, C.M. Differential Scanning Calorimetry as a Tool for Protein Folding and Stability. Arch. Biochem. Biophys. 2013, 531, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Galván, H.J.; Hernández-Arteaga, A.C.; Rodríguez-Aranda, M.C.; Toro-Vazquez, J.F.; Cruz-González, N.; Ortíz-Chávez, S.; Comas-García, M.; Rodríguez, A.G.; Navarro-Contreras, H.R. Application of Raman Spectroscopy for the Determination of Proteins Denaturation and Amino Acids Decomposition Temperature. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 285, 121941. [Google Scholar] [CrossRef] [PubMed]
- Şen, D.; Gökmen, V. Kinetic Modeling of Maillard and Caramelization Reactions in Sucrose-Rich and Low Moisture Foods Applied for Roasted Nuts and Seeds. Food Chem. 2022, 395, 133583. [Google Scholar] [CrossRef] [PubMed]
- Weiss, I.M.; Muth, C.; Drumm, R.; Kirchner, H.O.K. Thermal Decomposition of the Amino Acids Glycine, Cysteine, Aspartic Acid, Asparagine, Glutamic Acid, Glutamine, Arginine and Histidine. BMC Biophys. 2018, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Salema, A.A.; Ting, R.M.W.; Shang, Y.K. Pyrolysis of Blend (Oil Palm Biomass and Sawdust) Biomass Using TG-MS. Bioresour. Technol. 2019, 274, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Huang, B.; Li, K.; Du, W.; Lu, K.; Zhang, Y. Thermal Interaction Analysis of Isolated Hemicellulose and Cellulose by Kinetic Parameters during Biomass Pyrolysis. Energy 2020, 195, 117010. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S. The Mechanism for Thermal Decomposition of Cellulose and Its Main Products. Bioresour. Technol. 2009, 100, 6496–6504. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S.; Bridgwater, A.V. Study on the Pyrolytic Behaviour of Xylan-Based Hemicellulose Using TG–FTIR and Py–GC–FTIR. J. Anal. Appl. Pyrolysis 2010, 87, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yan, R.; Chin, T.; Liang, D.T.; Chen, H.; Zheng, C. Thermogravimetric Analysis−Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. Energy Fuels 2004, 18, 1814–1821. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, E.; Chen, A. Volatile Production from Pyrolysis of Cellulose, Hemicellulose and Lignin. J. Energy Inst. 2017, 90, 902–913. [Google Scholar] [CrossRef]
- Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative Studies on the Pyrolysis of Cellulose, Hemicellulose, and Lignin Based on Combined Kinetics. J. Energy Inst. 2019, 92, 27–37. [Google Scholar] [CrossRef]
- ACI Committee 213. Guide for Structural Lightwieght-Aggregate Concrete. J. Am. Concr. Inst. Proc. 1967, 64, 433–469. [Google Scholar]
- Chaipanich, A.; Chindaprasirt, P. The Properties and Durablity of Autoclaved Aerated Concrete Masonry Blocks. In Eco-Efficient Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 215–230. [Google Scholar]
- Alengaram, U.J.; Muhit, B.A.A.; Jumaat, M.Z. bin Utilization of Oil Palm Kernel Shell as Lightweight Aggregate in Concrete—A Review. Constr. Build. Mater. 2013, 38, 161–172. [Google Scholar] [CrossRef]
- Martínez-García, C.; González-Fonteboa, B.; Martínez-Abella, F.; Carro- López, D. Performance of Mussel Shell as Aggregate in Plain Concrete. Constr. Build. Mater. 2017, 139, 570–583. [Google Scholar] [CrossRef]
- Colangelo, F.; Cioffi, R.; Liguori, B.; Iucolano, F. Recycled Polyolefins Waste as Aggregates for Lightweight Concrete. Compos. Part B Eng. 2016, 106, 234–241. [Google Scholar] [CrossRef]
- Pacheco Menor, M.C.; Serna Ros, P.; Macías García, A.; Arévalo Caballero, M.J. Granulated Cork with Bark Characterised as Environment-Friendly Lightweight Aggregate for Cement Based Materials. J. Clean. Prod. 2019, 229, 358–373. [Google Scholar] [CrossRef]
- Ünal, O.; Uygunoğlu, T.; Yildiz, A. Investigation of Properties of Low-Strength Lightweight Concrete for Thermal Insulation. Build. Environ. 2007, 42, 584–590. [Google Scholar] [CrossRef]
- Yang, C.-C.; Huang, R. A Two-Phase Model for Predicting the Compressive Strength of Concrete. Cem. Concr. Res. 1996, 26, 1567–1577. [Google Scholar] [CrossRef]
- Elastic Compatibility and the Behavior of Concrete. ACI J. Proc. 1986, 83, 10422. [CrossRef]
- Lo, T.Y.; Cui, H.Z.; Tang, W.C.; Leung, W.M. The Effect of Aggregate Absorption on Pore Area at Interfacial Zone of Lightweight Concrete. Constr. Build. Mater. 2008, 22, 623–628. [Google Scholar] [CrossRef]
- Raj, B.P.; Meena, C.S.; Agarwal, N.; Saini, L.; Hussain Khahro, S.; Subramaniam, U.; Ghosh, A. A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit. Energies 2021, 14, 4487. [Google Scholar] [CrossRef]
- Kircher, K.; Shi, X.; Patil, S.; Zhang, K.M. Cleanroom Energy Efficiency Strategies: Modeling and Simulation. Energy Build. 2010, 42, 282–289. [Google Scholar] [CrossRef]
- Arkar, C.; Vidrih, B.; Medved, S. Efficiency of Free Cooling Using Latent Heat Storage Integrated into the Ventilation System of a Low Energy Building. Int. J. Refrig. 2007, 30, 134–143. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Abu Hassan, Z.F.B.; Mahyuddin, N.B. Thermal Conductivity of ConcreteA Review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Cheboub, T.; Senhadji, Y.; Khelafi, H.; Escadeillas, G. Investigation of the Engineering Properties of Environmentally-Friendly Self-Compacting Lightweight Mortar Containing Olive Kernel Shells as Aggregate. J. Clean. Prod. 2020, 249, 119406. [Google Scholar] [CrossRef]
- Samson, G.; Phelipot-Mardelé, A.; Lanos, C. A Review of Thermomechanical Properties of Lightweight Concrete. Mag. Concr. Res. 2017, 69, 201–216. [Google Scholar] [CrossRef]
Hydrated Lime | Cement 52.5 | |
---|---|---|
Chemical analysis (wt %) | ||
SiO2 | - | 19.8 |
CaO | 75.68 | 63.89 |
Al2O3 | - | 4.43 |
Fe2O3 | - | 3.08 |
SO3 | - | 3.77 |
MgO | - | 1.02 |
Na2O | - | 0.09 |
K2O | - | 0.67 |
TiO2 | - | 0.18 |
Physical Properties | ||
Bulk density (kg/m3) | 450 | 770 |
Specific gravity (g/cm3) | 2.24 | 2.75 |
Compressive strength 7 days (N/mm2) | - | 30 |
Compressive strength 28 days (N/mm2) | - | 52.5 |
Physical Property | Coarse Aggregate | Fine Aggregate | ||
---|---|---|---|---|
PS | AS | PlS | Sand | |
Particle size (mm) | 4.5–9.5 | 4.5–9.5 | 4.5–9.5 | 1 |
Specific gravity (kg/dm3) | 1.28 | 1.44 | 1.37 | 1.5 |
Bulk density (kg/m3) | 556 | 630 | 591 | 1560 |
Water absorption (24 h) (%) | 15.2 | 10.9 | 12.6 | 1.1 |
Shape | Flaky | Flaky | Flaky | Tout-venant |
PS | AS | PlS | |
---|---|---|---|
Moisture content (%) | 4.2 ± 0.7 | 2.8 ± 0.4 | 3.8 ± 0.5 |
Ash (%) | 0.99 ± 0.2 | 1.12 ± 0.6 | 1.09 ± 0.6 |
* Lignin (%) | 41.7 | 51.4 | 49.5 |
* Hemicellulose (%) | 21.8 | 20.8 | 20.2 |
* Cellulose (%) | 23.8 | 22.4 | 23.2 |
C (%) | 47.7 ± 0.5 | 47.0 ± 0.5 | 47.3 ± 0.5 |
H (%) | 5.73 ± 0.10 | 6.13 ± 0.09 | 5.73 ± 0.09 |
N (%) | 0.19 ± 0.05 | 0.17 ± 0.04 | 0.36 ± 0.04 |
O (%) (from difference) | 45.39 | 45.58 | 45.52 |
Protein content (%) | 1.19 ± 0.10 | 1.06 ± 0.11 | 2.25 ± 0.11 |
Fat (%) | 0.09 ± 0.01 | 0.12 ± 0.02 | 0.11 ± 0.01 |
Sample | Lime | Cement | Sand | Lightweight Aggregate | w/b Ratio * |
---|---|---|---|---|---|
PSC_a | 585 | - | 625 | 350 | 0.45 |
ASC_a | 585 | - | 625 | 350 | 0.45 |
PlSC_a | 585 | - | 625 | 350 | 0.45 |
PSC_b | 390 | 195 | 625 | 350 | 0.40 |
ASC_b | 390 | 195 | 625 | 350 | 0.40 |
PlSC_b | 390 | 195 | 625 | 350 | 0.40 |
Region | Thermal Window | Thermally Activated Processes |
---|---|---|
I | 30–120 | Removal of moisture and VOCs up to ~100 °C |
II | ~120–210 | Removal of bound water, NH3 from protein denaturation, low-boiling VOCs, and loss of CO and CO2 |
III | ~210–260 | Shoulder related to protein degradation |
~260–430 | Removal of reaction water, high-boiling VOCs and SVOCs, decarboxylation of acids with CO2 loss, degradation of polysaccharides, plasticization, and pseudo-vitrification of the sample | |
Removal of hydrocarbons, fat degradation, water of constitution, CO and CO2, and volatilization of other metabolites | ||
IV | ~430–490 | Removal of reaction water, CO2, and other metabolites |
~490–700 | Weak reactions related to slow volatilization of CO2, carbon residues, and other molecules | |
Removal of reaction water, CO and CO2, and other metabolites | ||
V | ~700–1000 | Volatilization of carbon residues, probably C20–C40 fragments |
Residual ashes at 1000 °C | Inorganic compounds and carbon residues |
Region | Thermal Step | To | Tm | Tc | Δm% |
---|---|---|---|---|---|
I | (1) | 30 | 70.9 | 120 | −2.8 |
II | (2) | 120 | - | 261.7 | −3.4 |
III | (3) | 261.7 | 310.2 | 332.5 | −29.2 |
(4) | 332.5 | 377.4 | 423.2 | −39.4 | |
IV | (5) | 423.2 | - | 489.3 | −4.0 |
489.3 | - | 700 | −5.0 | ||
V | 700 | - | 1000 | −4.7 |
Region | Thermal Step | To | Tm | Tc | Δm% |
---|---|---|---|---|---|
I | (1) | 30 | 66.7 | 120 | −3.8 |
II | (2) | 120 | 220.4 | 261.7 | −4.8 |
III | (3) | 261.7 | 314.7 | 332.5 | −26.4 |
(4) | 332.5 | 375.1 | 423.2 | −36.4 | |
IV | (5) | 423.2 | - | 490 | −3.7 |
490 | - | 700 | −6.0 | ||
V | 700 | - | 1000 | −4.0 |
Region | Thermal Step | To | Tm | Tc | Δm% |
---|---|---|---|---|---|
I | (1) | 30 | 64.2 | 120 | −4.2 |
II | (2) | 120 | - | 261.7 | −5.5 |
III | (3) | 261.7 | 304.9 | 332.5 | −28.1 |
(4) | 332.5 | 355.1 | 423.2 | −29.2 | |
IV | (5) | 423.2 | 465 | 489.3 | −4.4 |
489.3 | - | 700 | −10.4 | ||
V | 700 | - | 1000 | −10.2 |
Density (kg/m3) * | |||
---|---|---|---|
Sample | Demoulded (24 h) | Air-Dry (28 d) | Oven-Dry (28 d) |
PSC_a | 1270.7 ± 1.5 | 1107.7 ± 1.4 | 1031.9 ± 1.4 |
ASC_a | 1308.3 ± 0.9 | 1148.3 ± 1.0 | 1124.0 ± 0.8 |
PlSC_a | 1288.4 ± 1.2 | 1124.0 ± 1.0 | 1053.0 ± 1.1 |
PSC_b | 1464.5 ± 0.9 | 1295.2 ± 0.8 | 1204.8 ± 0.7 |
ASC_b | 1513.7 ± 1.1 | 1342.6 ± 1.0 | 1251.9 ± 1.1 |
PlSC_b | 1489.2 ± 1.0 | 1315.2 ± 1.2 | 1232.3 ± 0.9 |
Compressive Strength (MPa) * | ||
---|---|---|
Sample | 28-Day | 56-Day |
PSC_a | 1.38 ± 0.20 | 1.99 ± 0.14 |
ASC_a | 2.87 ± 0.12 | 3.35 ± 0.15 |
PlSC_a | 1.95 ± 0.34 | 2.12 ± 0.17 |
PSC_b | 4.01 ± 0.16 | 4.97 ± 0.21 |
ASC_b | 6.98 ± 0.31 | 7.71 ± 0.13 |
PlSC_b | 5.11 ± 0.17 | 6.01 ± 0.19 |
Sample | Thermal Conductivity Coefficient (W/mK) * |
---|---|
PSC_a | 0.15 ± 0.01 |
ASC_a | 0.28 ± 0.03 |
PlSC_a | 0.19 ± 0.04 |
PSC_b | 0.20 ± 0.01 |
ASC_b | 0.37 ± 0.05 |
PlSC_b | 0.28 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Eusanio, V.; Bertacchini, L.; Marchetti, A.; Mariani, M.; Pastorelli, S.; Silvestri, M.; Tassi, L. Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete. Waste 2023, 1, 549-568. https://doi.org/10.3390/waste1020033
D’Eusanio V, Bertacchini L, Marchetti A, Mariani M, Pastorelli S, Silvestri M, Tassi L. Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete. Waste. 2023; 1(2):549-568. https://doi.org/10.3390/waste1020033
Chicago/Turabian StyleD’Eusanio, Veronica, Lucia Bertacchini, Andrea Marchetti, Mattia Mariani, Stefano Pastorelli, Michele Silvestri, and Lorenzo Tassi. 2023. "Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete" Waste 1, no. 2: 549-568. https://doi.org/10.3390/waste1020033
APA StyleD’Eusanio, V., Bertacchini, L., Marchetti, A., Mariani, M., Pastorelli, S., Silvestri, M., & Tassi, L. (2023). Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete. Waste, 1(2), 549-568. https://doi.org/10.3390/waste1020033