Previous Issue
Volume 4, December
 
 

Methane, Volume 5, Issue 1 (March 2026) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 6826 KB  
Article
Specific Nature of Neutral Red: A Study on Methanosarcina barkeri
by Priyanka Srivastava and Sheikh S. Rahman
Methane 2026, 5(1), 1; https://doi.org/10.3390/methane5010001 - 19 Dec 2025
Abstract
Neutral red (NR) is a phenazine dye that has been implicated in electron transfer processes in methanogenic archaea. NR has been previously observed to enhance methane production but its effects on Methanosarcina barkeri are unknown. This study aimed to investigate the effects of [...] Read more.
Neutral red (NR) is a phenazine dye that has been implicated in electron transfer processes in methanogenic archaea. NR has been previously observed to enhance methane production but its effects on Methanosarcina barkeri are unknown. This study aimed to investigate the effects of NR on M. barkeri DSM-804. M. barkeri cultures were grown in the presence of 10 and 250 µM NR for four weeks, and proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that methane production was significantly reduced in the presence of NR, at lower concentrations of both 10 and 250 µM NR treatments, compared to the control. Proteomic analysis revealed the downregulation of proteins related to substrate metabolism and methanogenesis, such as the heterodisulfide reductase subunits D (HDRD_METBF) and E (HDRE_METBF), suggesting that NR hindered essential metabolic processes. Proteomic analysis also revealed that M. barkeri lacked methanophenazine in its membrane, which is a component essential for electron transport via neutral red (NR) that supports enhanced growth and methane production. Further research is needed to explore the role of methanophenazine and understand the mechanisms underlying NR’s effects of NR on methanogenesis in M. barkeri. Full article
(This article belongs to the Special Issue Innovations in Methane Production from Anaerobic Digestion)
Show Figures

Figure 1

Previous Issue
Back to TopTop