Previous Issue
Volume 4, September
 
 

Methane, Volume 4, Issue 4 (December 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 1543 KB  
Article
Performance Evaluation of Different Reactor Concepts for the Oxidative Coupling of Methane on Miniplant Scale
by Tim Karsten, Abigail Perez Ortiz, Reinhard Schomäcker and Jens-Uwe Repke
Methane 2025, 4(4), 25; https://doi.org/10.3390/methane4040025 - 21 Oct 2025
Viewed by 26
Abstract
In this study, three different reactor concepts for the oxidative coupling of methane (OCM) reaction are examined at the miniplant scale. Their performance and response to variations in key process parameters, such as temperature and gas hourly space velocity (GHSV), are evaluated over [...] Read more.
In this study, three different reactor concepts for the oxidative coupling of methane (OCM) reaction are examined at the miniplant scale. Their performance and response to variations in key process parameters, such as temperature and gas hourly space velocity (GHSV), are evaluated over a wide range. In addition to the conventional Packed Bed Reactor (PBR), Packed Bed Membrane Reactor (PBMR), and Chemical Looping Reactor (CLR) approaches were tested. The PBMR was realized with a porous ceramic α-Alumina membrane as air/O2 distributor. The CLR was operated in a poly-cyclic operation. Similarities of the different reactor concepts as well as layout-immanent differences with regard to changes in reaction conditions could be identified and advantages and disadvantages of the processes highlighted. The results show that C2 selectivity can be improved by both PBMR and CLR in comparison to conventional PBR, possibly reducing cost-intensive downstream units. While a PBMR can slightly improve selectivity (23%) while keeping the same conversion compared to a PBR, the use of a CLR allows for achieving exceptionally high selectivities of up to 90%. In order to address the low conversion, CLR tests were carried out with an additional O2 carrier material, which led to a significant improvement in terms of C2 yield. In addition to an evaluation and comparison of the different reactor concepts, the findings at the miniplant scale provide estimates of their potential use and scalability. Full article
Show Figures

Graphical abstract

25 pages, 5196 KB  
Article
Phase Behaviour of Multicomponent Mixtures of Hydrocarbons: MD Simulation
by Alexander Sidorenkov and Viktor Ivanov
Methane 2025, 4(4), 24; https://doi.org/10.3390/methane4040024 - 20 Oct 2025
Viewed by 112
Abstract
We perform a molecular dynamics simulation of a bulk eight-component hydrocarbon mixture that roughly represents a composition of hydrocarbon fluid in a volatile oil reservoir. For that goal, we have developed a method for building molecular models of hydrocarbon mixtures which can include [...] Read more.
We perform a molecular dynamics simulation of a bulk eight-component hydrocarbon mixture that roughly represents a composition of hydrocarbon fluid in a volatile oil reservoir. For that goal, we have developed a method for building molecular models of hydrocarbon mixtures which can include various branched molecules. We have used self-periodical simulation boxes with different aspect ratios. Our main focus here is the phase behavior of a multicomponent mixture in the presence of gas–liquid interfaces of different shapes: spherical, cylindrical, and slab-like gas bubbles. We have developed a method for calculating properties of coexisting phases in molecular simulations of multicomponent systems. In particular, it allows us to analyze the local composition of the mixture and to calculate the molar densities of components in liquid and gas phases, and inside the interface layer between them. For the values of model parameters that we have used so far, the mixture is homogeneous at a high pressure and undergoes liquid–gas phase separation upon decreasing the pressure. We have kept the same temperature T=375.15 K, the same composition and the same number of molecules in all systems and used several combinations of the simulation box size and shape to control the overall density, and therefore also the pressure, as well as the presence or absence of a liquid–gas interface and its shape. The gas bubble that appears in the system is mainly composed of methane. There is also a small number of ethane and butane molecules, a tiny number of hexane molecules, and no molecules of heavier components at all. In the liquid phase, all components are present. We also show that inside the gas–liquid interface layer, which is actually quite broad, the molar density of methane is also higher than that of other components and even reaches a maximum value in the middle of the interface. Ethane behaves similarly: its molar density also reaches a maximum inside the interface. The molar density of heavier components grows monotonically from the inner part of the interface towards its outer part and shows a very small (almost not visible) maximum at the outer side of the bubble. Full article
Show Figures

Figure 1

23 pages, 824 KB  
Article
Treating Low-Concentration Methane Emissions via a Methanotroph-Based Biotrickling Filter: Techno-Economic and Life Cycle Assessment
by Waaseyaaban-nooji’iwe Landgren, Robert M. Handler, David R. Shonnard and Mary E. Lidstrom
Methane 2025, 4(4), 23; https://doi.org/10.3390/methane4040023 - 15 Oct 2025
Viewed by 276
Abstract
Methane, a greenhouse gas which has a global warming potential 80 times greater than carbon dioxide on a 20-year time scale, greatly contributes to global warming. Removing 1 Gt of atmospheric methane by 2050 would limit global temperature increase from reaching 1.5 °C. [...] Read more.
Methane, a greenhouse gas which has a global warming potential 80 times greater than carbon dioxide on a 20-year time scale, greatly contributes to global warming. Removing 1 Gt of atmospheric methane by 2050 would limit global temperature increase from reaching 1.5 °C. Currently, biotrickling filter systems for removing atmospheric methane via methanotrophs exist, but not for very low methane concentrations (<1 v%). Recent work at the University of Washington to isolate and improve a microbial strain which thrives at 500 ppmv CH4 has removed one obstacle in making this technology feasible. In this study, techno-economic and environmental life cycle assessment analyses conducted on this process have assessed its economic feasibility, greenhouse gas reduction potential, and possible areas of improvement. Study results show that at 500 ppmv CH4, this process could remove atmospheric methane at a cost of USD 3992–5224/tCH4. The best-performing case also produces annual net reductions in warming potential by 276–311 tCO2e/120 m3 process unit deployed. Many opportunities exist to improve the outcomes of the baseline analysis even further, especially related to reducing the transport distance of media and harvested biomass. Full article
Show Figures

Figure 1

16 pages, 1377 KB  
Article
Growth Analysis of Methylotuvimicrobium buryatense 5GB1C and Its Utilization for Treating Low Methane Concentrations in a Packed-Bed Column Reactor
by Lian He, Naomi E. Kern, Sergey Stolyar and Mary E. Lidstrom
Methane 2025, 4(4), 22; https://doi.org/10.3390/methane4040022 - 14 Oct 2025
Cited by 1 | Viewed by 293
Abstract
In 2024, the global average temperature reached 1.55 °C above the pre-industrial level for the first time. However, we could still keep the long-term global average temperature below 2 °C if all possible measures are taken to mitigate greenhouse gases. It is widely [...] Read more.
In 2024, the global average temperature reached 1.55 °C above the pre-industrial level for the first time. However, we could still keep the long-term global average temperature below 2 °C if all possible measures are taken to mitigate greenhouse gases. It is widely accepted that methane (CH4) mitigation can slow global warming in the near term. Among all approaches toward this goal, the utilization of aerobic methanotrophs, which are natural catalysts for the conversion of CH4, emerges as a promising solution. Previously, we identified a candidate for CH4 mitigation, Methylotuvimicrobium buryatense 5GB1C, which exhibits a greater growth rate and CH4 consumption rate than other known methanotrophs at 500 ppm CH4. In this study, we address aspects of the practical applications of this methanotroph for CH4 mitigation. We first examined temperature and medium conditions to optimize M. buryatense 5GB1C growth at 500 ppm CH4. The results show that M. buryatense 5GB1C has a broad optimal temperature range for growth at 500 ppm, from 15 °C to 30 °C, and that its growth rate is consistently improved by 20–30% in 10-fold-diluted medium. Next, to demonstrate the feasibility of CH4 removal at low concentrations by this methanotroph, we applied it in a laboratory-scale packed-bed column reactor for the treatment of 500 ppm CH4 and tested different packing materials. The column reactor experiments revealed a maximum elimination capacity of 2.1 g CH4 m−3 h−1 with 2 mm cellulose beads as the packing material. These results demonstrate that with further technological innovation, this methanotroph has the potential for real-world methane mitigation. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop