Previous Issue
Volume 5, June
 
 

Int. J. Transl. Med., Volume 5, Issue 3 (September 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 725 KiB  
Review
Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications
by Guillermo de Jesús Aguirre-Vera, Luisa Montufar, María Fernanda Tejada-Pineda, María Paula Fernandez Gomez, Andres Alvarez-Pinzon, José E. Valerio and Eder Luna-Ceron
Int. J. Transl. Med. 2025, 5(3), 31; https://doi.org/10.3390/ijtm5030031 - 22 Jul 2025
Abstract
Epilepsy remains a major therapeutic challenge, with approximately one-third of patients experiencing drug-resistant epilepsy (DRE) despite the availability of multiple antiseizure medications (ASMs). This review aims to evaluate emerging ASMs—cenobamate, fenfluramine, ganaxolone, ezogabine (retigabine), and perampanel—with a focus on their mechanisms of action, [...] Read more.
Epilepsy remains a major therapeutic challenge, with approximately one-third of patients experiencing drug-resistant epilepsy (DRE) despite the availability of multiple antiseizure medications (ASMs). This review aims to evaluate emerging ASMs—cenobamate, fenfluramine, ganaxolone, ezogabine (retigabine), and perampanel—with a focus on their mechanisms of action, pharmacological profiles, and potential role in precision medicine. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science to identify preclinical and clinical studies evaluating the pharmacodynamics, pharmacokinetics, efficacy, and safety of the selected ASMs. Relevant trials, reviews, and mechanistic studies were reviewed to synthesize the current understanding of their application in DRE and specific epilepsy syndromes. Each ASM demonstrated unique mechanisms targeting hyperexcitability, including the modulation of γ-aminobutyric acid receptor A (GABA-A) receptors, sodium and potassium channels, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA receptors), and serotonin systems. These mechanisms correspond with specific pathophysiological features in syndromes such as Dravet and Lennox–Gastaut. Evidence from clinical trials supports their use as adjunctive therapies with generally favorable tolerability, though adverse events and variable efficacy profiles were noted. The mechanistic diversity of these emerging ASMs supports their value in personalized epilepsy management, particularly in treatment-resistant cases. While the promise of precision medicine is evident, further studies are required to address challenges related to long-term safety, cost, and equitable access. Full article
Show Figures

Figure 1

27 pages, 1276 KiB  
Review
Hyperuricemia and Insulin Resistance: Interplay and Potential for Targeted Therapies
by Opeyemi. O. Deji-Oloruntoba, James Onoruoiza Balogun, Taiwo. O. Elufioye and Simeon Okechukwu Ajakwe
Int. J. Transl. Med. 2025, 5(3), 30; https://doi.org/10.3390/ijtm5030030 - 10 Jul 2025
Viewed by 446
Abstract
Hyperuricemia, defined as elevated serum uric acid (SUA) levels (>6.8 mg/dL), is traditionally linked to gout and nephrolithiasis but is increasingly implicated in insulin resistance (IR) and type 2 diabetes mellitus (T2DM). Epidemiological studies, such as NHANES, suggest hyperuricemia increases the risk of [...] Read more.
Hyperuricemia, defined as elevated serum uric acid (SUA) levels (>6.8 mg/dL), is traditionally linked to gout and nephrolithiasis but is increasingly implicated in insulin resistance (IR) and type 2 diabetes mellitus (T2DM). Epidemiological studies, such as NHANES, suggest hyperuricemia increases the risk of T2DM by 1.6 to 2.5 times. Mechanistically, uric acid promotes IR via oxidative stress, chronic inflammation, endothelial dysfunction, and adipocyte dysregulation. Despite growing evidence, significant gaps remain in understanding these pathways, with existing studies often limited by observational designs and short intervention durations. A bibliographic analysis of studies from 2004–2024 using Web of Science and VOSviewer highlights a growing focus on hyperuricemia’s interplay with inflammation, oxidative stress, and metabolic disorders. However, inconsistencies in therapeutic outcomes and limited exploration of causality underscore the need for further research. We also explored the importance of gender stratification and the limitations of the binary model for the relationship between hyperuricemia and insulin resistance. This review emphasizes the importance of addressing these gaps to optimize hyperuricemia management as a potential strategy for diabetes prevention and metabolic health improvement. Full article
Show Figures

Figure 1

24 pages, 14721 KiB  
Article
Loss of 4.1B Drives PRMT3-Mediated Regulation of GBM Brain Tumour Stem Cell Growth
by Ravinder K. Bahia, Kyle Heemskerk, Samir Assaf, Orsolya Cseh, Xiaoguang Hao, Rozina Hassam, Panagiotis Prinos, H. Artee Luchman and Samuel Weiss
Int. J. Transl. Med. 2025, 5(3), 29; https://doi.org/10.3390/ijtm5030029 - 7 Jul 2025
Viewed by 389
Abstract
Background: Protein arginine methyltransferase 3 (PRMT3), a type I family PRMT, regulates the activity of downstream substrates by catalyzing the asymmetric dimethylation of arginine residues. While PRMT3 activity has been reported to be deregulated in many cancers, including glioblastoma (GBM), the underlying signalling [...] Read more.
Background: Protein arginine methyltransferase 3 (PRMT3), a type I family PRMT, regulates the activity of downstream substrates by catalyzing the asymmetric dimethylation of arginine residues. While PRMT3 activity has been reported to be deregulated in many cancers, including glioblastoma (GBM), the underlying signalling mechanisms that contribute to disease progression are largely unknown. Methods: We tested the efficacy of a PRMT3 chemical probe, SGC707, in a cohort of GBM patient-derived primary and recurrent brain tumour stem cell (BTSC) lines. RNA-sequencing, CRISPR-cas9 knockout, and inducible overexpression methods were used to investigate the molecular mechanisms regulated by the aberrant activity of PRMT3 in different BTSC lines. Results: We show that expression of the tumour suppressor protein 4.1B, a negative regulator of PRMT3, predicts the response of GBM BTSCs to the PRMT3 chemical probe, SGC707. Furthermore, PRMT3 modulates the stability and subcellular localization of the downstream effector, UHRF1, a member of the DNA methylation complex. These findings suggest that UHRF1 and DNMT1 may suppress the expression of 4.1B through the increased promoter methylation of EPB4.1L3. Intriguingly, the inducible overexpression of EPB4.1L3 in the BT248EPB4.1L3low BTSC line mimicked the effects of the pharmacologic and genetic inhibition of PRMT3. In contrast, knockout of EPB4.1L3 in BT143EPB4.1L3high cells reduced the interactions between PRMT3 and 4.1B proteins, resulting in increased sensitivity of knockout cells to SGC707 treatment. Conclusions: These findings show that 4.1B, PRMT3, and UHRF1/DNMT1 function together to promote BTSC growth. Thus, targeting PRMT3 or UHRF1/DNMT1, especially in tumours with low endogenous 4.1B protein, may have high therapeutic relevance. Full article
Show Figures

Figure 1

30 pages, 2283 KiB  
Review
Protein Engineering Paving the Way for Next-Generation Therapies in Cancer
by Zahra Naderiyan and Alireza Shoari
Int. J. Transl. Med. 2025, 5(3), 28; https://doi.org/10.3390/ijtm5030028 - 6 Jul 2025
Viewed by 706
Abstract
Cancer continues to be a leading cause of global mortality, necessitating innovative therapeutic strategies to address its complexity and heterogeneity. Protein engineering has emerged as a transformative approach in developing cancer biotherapeutics, enabling the creation of highly specific, potent, and adaptable treatments. This [...] Read more.
Cancer continues to be a leading cause of global mortality, necessitating innovative therapeutic strategies to address its complexity and heterogeneity. Protein engineering has emerged as a transformative approach in developing cancer biotherapeutics, enabling the creation of highly specific, potent, and adaptable treatments. This paper provides a comprehensive review of the state-of-the-art in protein engineering, highlighting key techniques such as directed evolution, rational design, and hybrid approaches that underpin the development of monoclonal antibodies, bispecific antibodies, and novel fusion proteins. Case studies of FDA-approved therapies, including engineered monoclonal antibodies like trastuzumab and bispecific T-cell engagers such as blinatumomab, are discussed to illustrate the impact of these advancements. Furthermore, emerging trends, including AI-driven protein design and synthetic biology applications, are explored alongside their potential to revolutionize future cancer treatments. Challenges such as immunogenicity, stability, and scalability are critically evaluated, offering insights into potential solutions and future research directions. By synthesizing advancements in protein science and oncology, this paper aims to guide researchers and clinicians in harnessing the full potential of engineered proteins for cancer therapy. Full article
Show Figures

Figure 1

17 pages, 791 KiB  
Review
Exploiting Synthetic Lethality of PRMT5 for Precision Treatment of MTAP-Deficient Glioblastoma
by Trang T. T. Nguyen, Eunhee Yi and Christian E. Badr
Int. J. Transl. Med. 2025, 5(3), 27; https://doi.org/10.3390/ijtm5030027 - 29 Jun 2025
Viewed by 703
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by a dismal prognosis and limited therapeutic options. Its highly invasive nature and pronounced intratumoral heterogeneity underscores the urgent need for innovative and targeted therapeutic strategies. One promising approach is synthetic [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by a dismal prognosis and limited therapeutic options. Its highly invasive nature and pronounced intratumoral heterogeneity underscores the urgent need for innovative and targeted therapeutic strategies. One promising approach is synthetic lethality, which exploits cancer-specific genetic vulnerabilities to selectively eliminate tumor cells. A well-characterized example involves the deletion of methylthioadenosine phosphorylase (MTAP), commonly observed in GBM and other malignancies. This review focuses on synthetic lethality targeting protein arginine methyltransferase 5 (PRMT5) in MTAP-deleted GBM. Loss of MTAP leads to the accumulation of methylthioadenosine (MTA), a metabolite that partially inhibits PRMT5, thereby creating a selective vulnerability to PRMT5 inhibition which is used to inhibit the residual function of PRMT5. We critically evaluate preclinical and clinical data on both first- and second-generation PRMT5 inhibitors, with particular emphasis on MTA-cooperative compounds that selectively exploit MTAP deficiency. Despite promising anti-tumor activity in vitro, the clinical efficacy of PRMT5 inhibitors is often limited by the tumor microenvironment, particularly the impact of non-malignant cells that attenuate drug activity. Finally, we explore rational combination strategies that integrate PRMT5 inhibition with existing therapies to enhance clinical outcomes in GBM. Full article
Show Figures

Figure 1

21 pages, 1856 KiB  
Article
Decoding the CD36-Centric Axis in Gastric Cancer: Insights into Lipid Metabolism, Obesity, and Hypercholesterolemia
by Preyangsee Dutta, Dwaipayan Saha, Atanu Giri, Aseem Rai Bhatnagar and Abhijit Chakraborty
Int. J. Transl. Med. 2025, 5(3), 26; https://doi.org/10.3390/ijtm5030026 - 23 Jun 2025
Viewed by 535
Abstract
Background: Gastric cancer is a leading cause of cancer-related mortality worldwide, with approximately one million new cases diagnosed annually. While Helicobacter pylori infection remains a primary etiological factor, mounting evidence implicates obesity and lipid metabolic dysregulation, particularly in hypercholesterolemia, as emerging drivers of [...] Read more.
Background: Gastric cancer is a leading cause of cancer-related mortality worldwide, with approximately one million new cases diagnosed annually. While Helicobacter pylori infection remains a primary etiological factor, mounting evidence implicates obesity and lipid metabolic dysregulation, particularly in hypercholesterolemia, as emerging drivers of gastric tumorigenesis. This study investigates the molecular intersections between gastric cancer, obesity, and hypercholesterolemia through a comprehensive multi-omics and systems biology approach. Methods: We conducted integrative transcriptomic analysis of gastric adenocarcinoma using The Cancer Genome Atlas (TCGA) RNA-sequencing dataset (n = 623, 8863 genes), matched with standardized clinical metadata (n = 413). Differential gene expression between survival groups was assessed using Welch’s t-test with Benjamini–Hochberg correction (FDR < 0.05, |log2FC| ≥ 1). High-confidence gene sets for obesity (n = 128) and hypercholesterolemia (n = 97) were curated from the OMIM, STRING (confidence ≥ 0.7), and KEGG databases using hierarchical evidence-based prioritization. Overlapping gene signatures were identified, followed by pathway enrichment via Enrichr (KEGG 2021 Human) and protein–protein interaction (PPI) analysis using STRING v11.5 and Cytoscape v3.9.0. CD36’s prognostic value was evaluated via Kaplan–Meier and log-rank testing alongside clinicopathological correlations. Results: We identified 36 genes shared between obesity and gastric cancer, and 31 genes shared between hypercholesterolemia and gastric cancer. CD36 emerged as the only gene intersecting all three conditions, marking it as a unique molecular integrator. Enrichment analyses implicated dysregulated fatty acid uptake, adipocytokine signaling, cholesterol metabolism, and NF-κB-mediated inflammation as key pathways. Elevated CD36 expression was significantly correlated with higher tumor stage (p = 0.016), reduced overall survival (p = 0.001), and race-specific expression differences (p = 0.007). No sex-based differences in CD36 expression or survival were observed. Conclusions: CD36 is a central metabolic–oncogenic node linking obesity, hypercholesterolemia, and gastric cancer. It functions as both a mechanistic driver of tumor progression and a clinically actionable biomarker, particularly in metabolically comorbid patients. These findings provide a rationale for targeting CD36-driven pathways as part of a precision oncology strategy and highlight the need to incorporate metabolic profiling into gastric cancer risk assessment and treatment paradigms. Full article
Show Figures

Figure 1

21 pages, 1799 KiB  
Review
Novel Roles and Therapeutic Approaches Linking Platelets and Megakaryocytes to Non-Hemostatic and Thrombotic Disease
by Ana Kasirer-Friede
Int. J. Transl. Med. 2025, 5(3), 25; https://doi.org/10.3390/ijtm5030025 - 22 Jun 2025
Viewed by 322
Abstract
Historically, pharmacological interventions aimed at platelets have targeted their canonical hemostatic and thrombotic roles. The therapeutic vision, however, has minimally embraced alternate mechanisms by which anucleate platelets, their parent cells, megakaryocytes, and cellular derivatives may be utilized to yield novel and effective therapies. [...] Read more.
Historically, pharmacological interventions aimed at platelets have targeted their canonical hemostatic and thrombotic roles. The therapeutic vision, however, has minimally embraced alternate mechanisms by which anucleate platelets, their parent cells, megakaryocytes, and cellular derivatives may be utilized to yield novel and effective therapies. Platelets contain storage granules rich in a wide variety of proteins, chemicals, growth factors, and lipid particles that can modulate the fate and activity of diverse cell types, and impact diseases not previously thought to have a platelet component. In this article, we will address unconventional platelet contributions to health and disease development. Recent studies indicate extensive platelet roles in neurodegeneration, insulin secretion, and bone marrow fibrosis, along with a recognition of platelets as immune cells in their own right, partially based on the presence of surface MHC, Toll-like receptors, and stored immunomodulatory molecules. Recent technological advances have produced iPS-derived gene-editable megakaryocytes (MKs) that have been differentiated to clinical-grade platelets for transfusion; however, such successes are still rare. Continued improvements in the standardization of cell isolation, iPS differentiation protocols, technology for the utilization of platelet derivatives, and platelet Omics will expand our understanding of underlying platelet and MK heterogeneity and direct novel therapeutic applications. Furthermore, additional roles for these cells as microniche sensors that monitor systemic pathology by endocytosing shed particles as they circulate through the vasculature will be explored. Taken together, novel insights into the many exciting potential uses of platelets outside of their canonical roles are on the horizon, and continued amelioration of existing protocols and enhanced understanding of communication pathways between platelets and specific cells will help expand opportunities for platelet-related clinical trials to yield improved health outcomes. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop