Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications
Abstract
1. Introduction
2. Methods
- Original studies, clinical trials, meta-analyses, or systematic reviews indexed in PubMed, Scopus, and Web of Science.
- Publications focused on cenobamate, fenfluramine, ganaxolone, ezogabine, or perampanel.
- Studies addressing pharmacokinetics, mechanism of action, clinical efficacy, or safety in drug-resistant epilepsy.
- Research conducted in pediatric, adolescent, or adult populations with genetic generalized epilepsy or specific epilepsy syndromes (e.g., Dravet syndrome, Lennox–Gastaut syndrome, CDKL5 deficiency disorder).
- Articles published in English between 2015 and 2025.
3. Cenobamate
3.1. Novel Mechanism of Action
3.2. Pharmacokinetics
3.3. Advantages over Classic Antiepileptics
3.4. Clinical Studies That Have Supported Its Use
4. Fenfluramine
4.1. Novel Mechanism of Action
4.2. Pharmacokinetics
4.3. Advantages over Classic Antiepileptics
5. Ztalmy (Ganaxolone)
5.1. Action Mechanism
5.2. Pharmacokinetics
5.3. Clinical Studies That Have Supported Its Use
5.4. Advantages over Classic Antiepileptics
6. Potiva (Ezogabine or Retigabine)
6.1. Novel Mechanism of Action
6.2. Pharmacokinetics
6.3. Advantages over Classic Antiepileptics
6.4. Clinical Studies That Have Supported Its Use
7. Perampanel
7.1. Novel Action Mechanism
7.2. Pharmakocinetics
7.3. Clinical Studies That Have Supported Its Use
7.4. Advantages over Classic Antiepileptics
8. Discussion
8.1. Age-Dependent Efficacy and Pharmacokinetics of Emerging ASMs
8.2. Sex Differences in Pharmacodynamics, Efficacy, and Safety
8.2.1. Pharmacokinetic and Dose Considerations
8.2.2. Hormonal Influences on Seizures
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASM | Antiseizure Medication |
DRE | Drug-Resistant Epilepsy |
GABA | Gamma-Aminobutyric Acid |
GABAA | GABA type A receptor |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
CYP | Cytochrome P450 (enzyme system) |
VGSC | Voltage-Gated Sodium Channels |
NAMR | N-acetyl metabolite of retigabine (ezogabine) |
P-gp | P-glycoprotein |
BZD | Benzodiazepine |
Iphasic | Phasic GABA current |
Itonic | Tonic GABA current |
Tmax | Time to maximum plasma concentration |
AUC | Area Under the Curve (pharmacokinetics) |
Cmax | Maximum plasma concentration |
QALY | Quality-Adjusted Life Year |
CDKL5 | Cyclin-Dependent Kinase-Like 5 (gene associated with deficiency disorder) |
CDD | CDKL5 Deficiency Disorder |
ADHD | Attention Deficit Hyperactivity Disorder |
d-F | dexfenfluramine (stereoisomer of fenfluramine) |
1-F | levofenfluramine (stereoisomer of fenfluramine) |
d-NF | dexnorfenfluramine (metabolite) |
LGS | Lennox–Gastaut Syndrome |
DS | Dravet Syndrome |
SCN1A | Sodium Channel, Neuronal Type I Alpha Subunit gene |
SHT | Serotonin (5-HT) |
SWD | Spike–Wave Discharge |
CNS | Central Nervous System |
KCNQ | Potassium Voltage-Gated Channel Subfamily Q |
Kv7 | Voltage-gated potassium channel 7 (same as KCNQ) |
PC12 | Pheochromocytoma Cell Line (neuronal differentiation model) |
PCDH19 | Protocadherin 19 gene |
PCDH19-CE | PCDH19 Clustering Epilepsy |
GLC | Gas–Liquid Chromatography |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
AED | Antiepileptic Drug |
TEAE | Treatment-Emergent Adverse Event |
RSE | Refractory Status Epilepticus |
DEE | Developmental and Epileptic Encephalopathy |
Vd | Volume of distribution |
t½ | Elimination half-life |
BZD | Benzodiazepine |
CYP3A4 | Cytochrome P450 3A4 (major enzyme for drug metabolism) |
References
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Falco-Walter, J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020, 40, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sander, J.W. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav. 2020, 105, 106949. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef]
- Leandro, K.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. ABC transporters in drug-resistant epilepsy: Mechanisms of upregulation and therapeutic approaches. Pharmacol. Res. 2019, 144, 357–376. [Google Scholar] [CrossRef]
- Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front. Neurol. 2017, 8, 301. [Google Scholar] [CrossRef]
- Lagogianni, C.; Gatzonis, S.; Patrikelis, P. Fatigue and cognitive functions in epilepsy: A review of the literature. Epilepsy Behav. 2021, 114, 107541. [Google Scholar] [CrossRef]
- Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014, 37, 59–70. [Google Scholar] [CrossRef]
- Roberti, R.; De Caro, C.; Iannone, L.F.; Zaccara, G.; Lattanzi, S.; Russo, E. Pharmacology of Cenobamate: Mechanism of Action, Pharmacokinetics, Drug-Drug Interactions and Tolerability. CNS Drugs 2021, 35, 609–618. [Google Scholar] [CrossRef]
- Sullivan, J.; Simmons, R. Fenfluramine for treatment-resistant epilepsy in Dravet syndrome and other genetically mediated epilepsies. Drugs Today 2021, 57, 449–454. [Google Scholar] [CrossRef]
- Pong, A.W.; Xu, K.J.; Klein, P. Recent advances in pharmacotherapy for epilepsy. Curr. Opin. Neurol. 2023, 36, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.; Mahida, S.; Kelly, M.; Poduri, A.; Olson, H.E. Ezogabine impacts seizures and development in patients with KCNQ2 developmental and epileptic encephalopathy. Epilepsia 2023, 64, e143–e147. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol. 2019, 855, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol. 2020, 879, 173117. [Google Scholar] [CrossRef]
- Lattanzi, S.; Trinka, E.; Zaccara, G.; Striano, P.; Del Giovane, C.; Silvestrini, M.; Brigo, F. Adjunctive Cenobamate for Focal-Onset Seizures in Adults: A Systematic Review and Meta-Analysis. CNS Drugs 2020, 34, 1105–1120. [Google Scholar] [CrossRef]
- Serrano-Castro, P.J.; Rodríguez-Uranga, J.J.; Cabezudo-García, P.; García-Martín, G.; Romero-Godoy, J.; Estivill-Torrús, G.; Ciano-Petersen, N.L.; Oliver, B.; Ortega-Pinazo, J.; López-Moreno, Y.; et al. Cenobamate and Clobazam Combination as Personalized Medicine in Autoimmune-Associated Epilepsy With Anti-Gad65 Antibodies. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200151. [Google Scholar] [CrossRef]
- Specchio, N.; Pietrafusa, N.; Vigevano, F. Is Cenobamate the Breakthrough We Have Been Wishing for? Int. J. Mol. Sci. 2021, 22, 9339. [Google Scholar] [CrossRef]
- Yang, E.; Sunwoo, J.; Huh, K.Y.; Kim, Y.K.; Lee, S.; Jang, I.J.; Yu, K.S. Pharmacokinetics and safety of cenobamate, a novel antiseizure medication, in healthy Japanese, and an ethnic comparison with healthy non-Japanese. Clin. Transl. Sci. 2022, 15, 490–500. [Google Scholar] [CrossRef]
- Beltrán-Corbellini, Á.; Romeral-Jiménez, M.; Mayo, P.; Román, I.S.M.; Iruzubieta, P.; Chico-García, J.L.; Parra-Díaz, P.; García-Morales, I.; Toledano, R.; Aledo-Serrano, Á.; et al. Cenobamate in patients with highly refractory focal epilepsy: A retrospective real-world study. Seizure-Eur. J. Epilepsy 2023, 111, 71–77. [Google Scholar] [CrossRef]
- Wheless, J.W. Adjunctive cenobamate for the treatment of focal onset seizures in adults with epilepsy: A critical review. Expert. Rev. Neurother. 2020, 20, 1085–1098. [Google Scholar] [CrossRef]
- Buckley, C.T.; Waters, O.R.; DeMaagd, G. Cenobamate: A New Adjunctive Agent for Drug-Resistant Focal Onset Epilepsy. Ann. Pharmacother. 2021, 55, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.S.; French, J.A.; Kowalski, J.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Mizne, S.; Kamin, M. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 2020, 94, e2311–e2322. [Google Scholar] [CrossRef] [PubMed]
- Aman, M.G.; Kern, R.A. Review of Fenfluramine in the Treatment of the Developmental Disabilities. J. Am. Acad. Child. Adolesc. Psychiatry 1989, 28, 549–565. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.; Grau, J.B.; Fortier, J.H.; Salvati, E.; Levy, R.J.; Ferrari, G. Serotonin and catecholamines in the development and progression of heart valve diseases. Cardiovasc. Res. 2017, 113, 849–857. [Google Scholar] [CrossRef]
- Balagura, G.; Cacciatore, M.; Grasso, E.A.; Striano, P.; Verrotti, A. Fenfluramine for the Treatment of Dravet Syndrome and Lennox-Gastaut Syndrome. CNS Drugs 2020, 34, 1001–1007. [Google Scholar] [CrossRef]
- Samanta, D. Fenfluramine: A Review of Pharmacology, Clinical Efficacy, and Safety in Epilepsy. Children 2022, 9, 1159. [Google Scholar] [CrossRef]
- Patel, S.; Geenen, K.R.; Dowless, D.; Bruno, P.L.; Thiele, E.A. Follow-up to low-dose fenfluramine for Sunflower syndrome: A non-randomized controlled trial. Dev. Med. Child Neurol. 2023, 65, 961–967. [Google Scholar] [CrossRef]
- Geenen, K.R.; Patel, S.; Thiele, E.A. Sunflower syndrome: A poorly understood photosensitive epilepsy. Dev. Med. Child Neurol. 2021, 63, 259–262. [Google Scholar] [CrossRef]
- Sourbron, J.; Lagae, L. Fenfluramine: A plethora of mechanisms? Front. Pharmacol. 2023, 14, 1192022. [Google Scholar] [CrossRef]
- Caccia, S.; Conforti, I.; Duchier, J.; Garattini, S. Pharmacokinetics of fenfluramine and norfenfluramine in volunteers given d- and dl-fenfluramine for 15 days. Eur. J. Clin. Pharmacol. 1985, 29, 221–224. [Google Scholar] [CrossRef]
- Martin, P.; Czerwiński, M.; Limaye, P.B.; Muranjan, S.; Ogilvie, B.W.; Smith, S.; Boyd, B. In vitro evaluation of fenfluramine and norfenfluramine as victims of drug interactions. Pharmacol. Res. Perspect. 2022, 10, e00958. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, B.; Boel, M.; Leyssens, K.; Van Rossem, C.; Neels, P.; Jorens, P.G.; Lagae, L. Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia 2012, 53, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, B.; Schoonjans, A.S.; Marchau, F.; Paelinck, B.P.; Lagae, L. Five-year extended follow-up status of 10 patients with Dravet syndrome treated with fenfluramine. Epilepsia 2016, 57, e129–e134. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Giraldo, E.; Sullivan, J.E. Advances in the Treatment of Drug-Resistant Pediatric Epilepsy. Semin. Neurol. 2020, 40, 257–262. [Google Scholar] [CrossRef]
- Olson, H.E.; Demarest, S.T.; Pestana-Knight, E.M.; Swanson, L.C.; Iqbal, S.; Lal, D.; Leonard, H.; Cross, J.H.; Devinsky, O.; Benke, T.A. Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review. Pediatr. Neurol. 2019, 97, 18–25. [Google Scholar] [CrossRef]
- Yawno, T.; Miller, S.L.; Bennet, L.; Wong, F.; Hirst, J.J.; Fahey, M.; Walker, D.W. Ganaxolone: A New Treatment for Neonatal Seizures. Front. Cell. Neurosci. 2017, 11, 246. Available online: https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2017.00246/full (accessed on 6 July 2024). [CrossRef]
- Nohria, V.; Giller, E. Ganaxolone. Neurother 2007, 4, 102–105. [Google Scholar] [CrossRef]
- Reddy, D.S. Neurosteroids as Novel Anticonvulsants for Refractory Status Epilepticus and Medical Countermeasures for Nerve Agents: A 15-Year Journey to Bring Ganaxolone from Bench to Clinic. J. Pharmacol. Exp. Ther. 2024, 388, 273–300. [Google Scholar] [CrossRef]
- Monaghan, E.P.; Navalta, L.A.; Shum, L.; Ashbrook, D.W.; Lee, D.A. Initial Human Experience with Ganaxolone, a Neuroactive Steroid with Antiepileptic Activity. Epilepsia 1997, 38, 1026–1031. [Google Scholar] [CrossRef]
- Sperling, M.R.; Klein, P.; Tsai, J. Randomized, double-blind, placebo-controlled phase 2 study of ganaxolone as add-on therapy in adults with uncontrolled partial-onset seizures. Epilepsia 2017, 58, 558–564. [Google Scholar] [CrossRef]
- Leonard, H.; Downs, J.; Benke, T.A.; Swanson, L.; Olson, H.; Demarest, S. CDKL5 deficiency disorder: Clinical features, diagnosis, and management. Lancet Neurol. 2022, 21, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A.; et al. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022, 21, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Olson, H.E.; Amin, S.; Bahi-Buisson, N.; Devinsky, O.; Marsh, E.D.; Pestana-Knight, E.; Rajaraman, R.R.; Aimetti, A.A.; Rybak, E.; Kong, F.; et al. Long-term treatment with ganaxolone for seizures associated with cyclin-dependent kinase-like 5 deficiency disorder: Two-year open-label extension follow-up. Epilepsia 2024, 65, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Vaitkevicius, H.; Ramsay, R.E.; Swisher, C.B.; Husain, A.M.; Aimetti, A.; Gasior, M. Intravenous ganaxolone for the treatment of refractory status epilepticus: Results from an open-label, dose-finding, phase 2 trial. Epilepsia 2022, 63, 2381–2391. [Google Scholar] [CrossRef]
- Kowkabi, S.; Yavarian, M.; Kaboodkhani, R.; Mohammadi, M.; Badv, R.S. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav. 2024, 154, 109730. Available online: https://www.epilepsybehavior.com/article/S1525-5050(24)00111-2/abstract (accessed on 6 July 2024). [CrossRef]
- Carter, R.B.; Wood, P.L.; Wieland, S.; Hawkinson, J.E.; Belelli, D.; Lambert, J.J.; White, H.S.; Wolf, H.H.; Mirsadeghi, S.; Tahir, S.H.; et al. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042, 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a selective, high-affinity, steroid modulator of the gamma-aminobutyric acid (A) receptor. J. Pharmacol. Exp. Ther. 1997, 280, 1284–1295. [Google Scholar] [CrossRef]
- Mares, P.; Stehlíková, M. Anticonvulsant doses of ganaxolone do not compromise motor performance in immature rats. Neurosci. Lett. 2010, 469, 396–399. [Google Scholar] [CrossRef]
- Reddy, D.S.; Rogawski, M.A. Ganaxolone suppression of behavioral and electrographic seizures in the mouse amygdala kindling model. Epilepsy Res. 2010, 89, 254–260. [Google Scholar] [CrossRef]
- Snead, O.C., III. Ganaxolone, a selective, high-affinity steroid modulator of the γ-aminobutyric acid-A receptor, exacerbates seizures in animal models of absence. Ann. Neurol. 1998, 44, 688–691. [Google Scholar] [CrossRef]
- Lattanzi, S.; Riva, A.; Striano, P. Ganaxolone treatment for epilepsy patients: From pharmacology to place in therapy. Expert. Rev. Neurother. 2021, 21, 1317–1332. [Google Scholar] [CrossRef]
- Splinter, M.Y. Ezogabine (Retigabine) and Its Role in the Treatment of Partial-Onset Seizures: A Review. Clin. Ther. 2012, 34, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Gunthorpe, M.J.; Large, C.H.; Sankar, R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia 2012, 53, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Tompson, D.J.; Crean, C.S. Clinical pharmacokinetics of retigabine/ezogabine. Curr. Clin. Pharmacol. 2013, 8, 319–331. [Google Scholar] [CrossRef]
- Brodie, M.J.; Lerche, H.; Gil-Nagel, A.; Elger, C.; Hall, S.; Shin, P.; Nohria, V.; Mansbach, H. Efficacy and safety of adjunctive ezogabine (retigabine) in refractory partial epilepsy. Neurology 2010, 75, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Gil-Nagel, A.; Wheless, J.W.; Kim, J.H.; Wechsler, R.T. Perampanel monotherapy for the treatment of epilepsy: Clinical trial and real-world evidence. Epilepsy Behav. 2022, 136, 108885. [Google Scholar] [CrossRef]
- Nissenkorn, A.; Kluger, G.; Schubert-Bast, S.; Bayat, A.; Bobylova, M.; Bonanni, P.; Ceulemans, B.; Coppola, A.; Di Bonaventura, C.; Feucht, M.; et al. Perampanel as precision therapy in rare genetic epilepsies. Epilepsia 2023, 64, 866–874. [Google Scholar] [CrossRef]
- Patsalos, P.N.; Spencer, E.P.; Berry, D.J. Therapeutic Drug Monitoring of Antiepileptic Drugs in Epilepsy: A 2018 Update. Ther. Drug Monit. 2018, 40, 526–548. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Schubert-Bast, S. Expanding the Treatment Landscape for Lennox-Gastaut Syndrome: Current and Future Strategies. CNS Drugs 2021, 35, 61–83. [Google Scholar] [CrossRef]
- Rohracher, A.; Zimmermann, G.; Villanueva, V.; Garamendi, I.; Sander, J.W.; Wehner, T.; Shankar, R.; Ben-Menachem, E.; Brodie, M.J.; Pensel, M.C.; et al. Perampanel in routine clinical use across Europe: Pooled, multicenter, observational data. Epilepsia 2018, 59, 1727–1739. [Google Scholar] [CrossRef]
- Potschka, H.; Trinka, E. Perampanel: Does it have broad-spectrum potential? Epilepsia 2019, 60 (Suppl. 1), 22–36. [Google Scholar] [CrossRef]
- Mesraoua, B.; Brigo, F.; Lattanzi, S.; Abou-Khalil, B.; Hail, H.A.; Asadi-Pooya, A.A. Drug-resistant epilepsy: Definition, pathophysiology, and management. J. Neurol. Sci. 2023, 452, 120766. Available online: https://www.jns-journal.com/article/S0022-510X(23)00227-7/abstract (accessed on 28 July 2024). [CrossRef] [PubMed]
- Berg, A.T.; Coryell, J.; Saneto, R.P.; Grinspan, Z.M.; Alexander, J.J.; Kekis, M.; Sullivan, J.E.; Wirrell, E.C.; Shellhaas, R.A.; Mytinger, J.R.; et al. Early-Life Epilepsies and the Emerging Role of Genetic Testing. JAMA Pediatr. 2017, 171, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Balaji, A.; Mohanlal, S.; Pachat, D.; Babu, S.S.; EK, S.K.; Mamukoya, N.; Das, S. Genome-Based Therapeutics: Era of Precision Medicine in Genetic Epilepsies and Epileptic Encephalopathies. Ann. Indian. Acad. Neurol. 2023, 26, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Gjerulfsen, C.E.; Oudin, M.J.; Furia, F.; Gverdtsiteli, S.; Landmark, C.J.; Trivisano, M.; Balestrini, S.; Guerrini, R.; Aledo-Serrano, A.; Morcos, R.; et al. Cenobamate as add-on treatment for SCN8A developmental and epileptic encephalopathy. medRxiv 2024, 66, 1119–1128. [Google Scholar] [CrossRef]
- Varughese, R.T.; Shah, Y.D.; Karkare, S.; Kothare, S.V. Adjunctive use of cenobamate for pediatric refractory focal-onset epilepsy: A single-center retrospective study. Epilepsy Behav. 2022, 130, 108679. [Google Scholar] [CrossRef]
- Cagigal, R.; Romero-Del-Rincon, C.; Fernandez-Perrone, A.; Cruz, R.; Møller, R.S.; Aledo-Serrano, A. Lack of effectiveness and seizure worsening with cenobamate in pediatric patients with Dravet syndrome. Epilepsia 2025, 66, e83–e89. [Google Scholar] [CrossRef]
- Makridis, K.L.; Friedo, A.L.; Kellinghaus, C.; Losch, F.P.; Schmitz, B.; Boßelmann, C.; Kaindl, A.M. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia 2022, 63, e164–e171. [Google Scholar] [CrossRef]
- Sullivan, J.; Helen Cross, J. Raising the bar: Fenfluramine sets new treatment standards for Dravet syndrome. Epilepsy Behav. 2021, 121, 108061. [Google Scholar] [CrossRef]
- Knupp, K.G.; Scheffer, I.E.; Ceulemans, B.; Sullivan, J.E.; Nickels, K.C.; Lagae, L.; Guerrini, R.; Zuberi, S.M.; Nabbout, R.; Riney, K.; et al. Efficacy and Safety of Fenfluramine for the Treatment of Seizures Associated With Lennox-Gastaut Syndrome: A Randomized Clinical Trial. JAMA Neurol. 2022, 79, 554–564. [Google Scholar] [CrossRef]
- Perucca, E.; Taglialatela, M. Targeting Kv7 Potassium Channels for Epilepsy. CNS Drugs 2025, 39, 263–288. [Google Scholar] [CrossRef]
- Zeng, Q.; Xia, X.; Jiang, L.; Chen, J.; Liu, Y.; Hu, Y. Efficacy and safety of adjunctive perampanel treatment in pediatric patients with epilepsy aged 4-12 years: A real-world study. J. Neurol. 2024, 271, 4566–4576. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, B.; Yang, H.; Williams, B.; Zhou, S.; Laurenza, A. Perampanel efficacy and safety by gender: Subanalysis of phase III randomized clinical studies in subjects with partial seizures. Epilepsia 2015, 56, e90–e94. [Google Scholar] [CrossRef] [PubMed]
- Gidal, B.E.; Laurenza, A.; Hussein, Z.; Yang, H.; Fain, R.; Edelstein, J.; Kumar, D.; Ferry, J. Perampanel efficacy and tolerability with enzyme-inducing AEDs in patients with epilepsy. Neurology 2015, 84, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, L.; Durante, V.; Battaglia, G.; Gasparini, S.; Zambrelli, E.; Ermio, C.; La Neve, A.; Mostacci, B.; Epilepsy, Gender Commission of the LICE (Italian chapter of the ILAE). Sex Differences in Adverse Effects of Antiseizure Medications in Adults with Epilepsy: A Systematic Review. CNS Drugs 2024, 38, 409–423. [Google Scholar] [CrossRef]
- Eunhae, Y.; Emily, S.; Natalie, R.; Nicholas, P.; Aaron, A.; Fadi, M.; Graham, R.H. Catamenial epilepsy. Pract. Neurol. 2022, 35–39, 44. Available online: https://practicalneurology.com/diseases-diagnoses/epilepsy-seizures/catamenial-epilepsy/31944/ (accessed on 31 May 2025).
- Girgis, M.M.F.; Farkasinszky, G.; Fekete, K.; Fekete, I.; Vecsernyés, M.; Bácskay, I.; Horváth, L. Sex differences in suspected adverse drug reactions of anti-seizure medications reported in Eudra Vigilance. Eur. J. Pharm. Sci. 2025, 210, 107119. [Google Scholar] [CrossRef]
Drug | Mechanism of Action | Metabolism | Advantages | Disadvantages |
---|---|---|---|---|
Cenobamate | Enhances GABA-A inhibition, inhibits sodium channels. | CYP3A4, CYP2B6 metabolism. | High efficacy in refractory focal seizures; cost-effective. | Somnolence, dizziness; requires careful titration to avoid hypersensitivity. |
Fenfluramine | Serotonin and noradrenaline modulation. | Metabolized by CYP1A2, CYP2D6, and CYP3A4; renal elimination of metabolites. | Effective in Dravet and Lennox–Gastaut syndromes; minimal cardiac risks with proper monitoring. | Reduced appetite, fatigue; requires cardiac monitoring. |
Ganaxolone | Positive allosteric modulator of extrasynaptic GABA-A. | Bi-exponential elimination with a half-life of ~37–70 h; no CYP interactions. | Suitable for rare syndromes like CDKL5 deficiency; low drug interaction potential. | Potential worsening of absence seizures; CNS-related side effects like sedation. |
Ezogabine | Stabilizes KCNQ potassium channels. | Rapidly metabolized by N-acetylation and glucuronidation; renal excretion. | Unique mechanism; benefits patients with overactive bladder; limited CYP interaction. | Urinary retention; dizziness and confusion as common side effects. |
Perampanel | Non-competitive antagonist at AMPA receptor. | Metabolized via CYP3A4; highly protein-bound. | Broad-spectrum efficacy for focal and generalized tonic–clonic seizures; long half-life allows QD dosing. | Requires plasma level monitoring; somnolence, potential drug interactions with CYP modulators. |
ASM | Adult Population | Pediatric Population | Sex Differences and Considerations | Key Safety Issues |
---|---|---|---|---|
Cenobamate | High efficacy for focal seizures; ~50% responders, ~20% seizure-free. Requires slow titration. | Effective in adolescents, similar efficacy as adults. Limited effectiveness in certain genetic pediatric epilepsies (e.g., Dravet). | No significant sex differences noted. | Rash/DRESS, sedation, dizziness. |
Fenfluramine | Effective in adults with lifelong Dravet/LGS syndromes; limited use otherwise. | Exceptional efficacy in pediatric Dravet and Lennox–Gastaut syndromes (~50% significant seizure reduction). | Comparable efficacy between sexes. Weight loss notable concern. | Appetite loss, cardiac monitoring required. |
Ganaxolone | Modest efficacy in adult focal seizures; not widely adopted. Under investigation for status epilepticus. | Significant benefit for pediatric CDKL5 deficiency disorder (≈30% seizure reduction). | Possible benefit for hormone-driven seizures (catamenial epilepsy). | Sedation, dizziness, fatigue. |
Ezogabine | Limited adult use due to safety concerns; withdrawn from market. | Potential targeted pediatric use (KCNQ2-DEE). No current broad pediatric use. | No known sex-based differences; urinary retention may impact older males more. | Skin/retinal pigmentation, urinary retention. |
Perampanel | Broad efficacy in focal/generalized seizures. Commonly used adjunctively in adults/adolescent. | Effective and well-tolerated in pediatric populations (≥60% responder rates). | Females may have higher drug levels; contraception interaction concerns. Behavioral side effects noted in both sexes. | Dizziness, irritability/aggression. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesús Aguirre-Vera, G.; Montufar, L.; Tejada-Pineda, M.F.; Gomez, M.P.F.; Alvarez-Pinzon, A.; Valerio, J.E.; Luna-Ceron, E. Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications. Int. J. Transl. Med. 2025, 5, 31. https://doi.org/10.3390/ijtm5030031
de Jesús Aguirre-Vera G, Montufar L, Tejada-Pineda MF, Gomez MPF, Alvarez-Pinzon A, Valerio JE, Luna-Ceron E. Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications. International Journal of Translational Medicine. 2025; 5(3):31. https://doi.org/10.3390/ijtm5030031
Chicago/Turabian Stylede Jesús Aguirre-Vera, Guillermo, Luisa Montufar, María Fernanda Tejada-Pineda, María Paula Fernandez Gomez, Andres Alvarez-Pinzon, José E. Valerio, and Eder Luna-Ceron. 2025. "Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications" International Journal of Translational Medicine 5, no. 3: 31. https://doi.org/10.3390/ijtm5030031
APA Stylede Jesús Aguirre-Vera, G., Montufar, L., Tejada-Pineda, M. F., Gomez, M. P. F., Alvarez-Pinzon, A., Valerio, J. E., & Luna-Ceron, E. (2025). Targeting Drug-Resistant Epilepsy: A Narrative Review of Five Novel Antiseizure Medications. International Journal of Translational Medicine, 5(3), 31. https://doi.org/10.3390/ijtm5030031