Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Study Selection
2.2. Effects of LED Light on Plant Morphology and Physiology
2.3. Effects of LED Light on the Production of Bioactive Compounds
2.4. Effects of LED Light on the Induction of the Flowering Stage
3. Discussion
4. Materials and Methods
4.1. Data Acquisition
- (1)
- they referred to one of three genera, namely, Lavandula, Salvia, or Thymus;
- (2)
- they included LED light treatments;
- (3)
- they assessed flowering in relation to LED light exposure in the Lamiaceae family.
4.2. Search Strategy
4.3. Selection Criteria
4.4. Study Selection and Data Extraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the Consequence of Environmental Stress for Accumulation of Secondary Metabolites in Medicinal and Aromatic Plants. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100255. [Google Scholar] [CrossRef]
- Fitsiou, E.; Pappa, A. Anticancer Activity of Essential Oils and Other Extracts from Aromatic Plants Grown in Greece. Antioxidants 2019, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and Multivariate Analyses to Investigate Variations in the Polyphenolic Compounds as Well as Antioxidant and Antiglycative Activities of Some Lamiaceae Species Native to Iran. Ind. Crops Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Kulak, M. Recurrent Drought Stress Effects on Essential Oil Profile of Lamiaceae Plants: An Approach Regarding Stress Memory. Ind. Crops Prod. 2020, 154, 112695. [Google Scholar] [CrossRef]
- Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C.R.; et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur Ex Griseb. & Schenk) Schur. Antioxidants 2020, 9, 480. [Google Scholar] [CrossRef]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Scariot, V. Ecophysiological and Phytochemical Responses of Salvia sinaloensis Fern. to Drought Stress. Plant Growth Regul. 2018, 84, 383–394. [Google Scholar] [CrossRef]
- Khajuria, A.K.; Bisht, N.; Bhagat, N. In Vitro Organogenesis and Plant Regeneration of Thymus serpyllum L.: An Important Aromatic Medicinal Plant. Vitr. Cell. Dev. Biol.-Plant 2020, 56, 652–661. [Google Scholar] [CrossRef]
- Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M. Regulation of Essential Oil in Aromatic Plants under Changing Environment. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100441. [Google Scholar] [CrossRef]
- Tabbert, J.M.; Schulz, H.; Krähmer, A. Increased Plant Quality, Greenhouse Productivity and Energy Efficiency with Broad-Spectrum LED Systems: A Case Study for Thyme (Thymus vulgaris L.). Plants 2021, 10, 960. [Google Scholar] [CrossRef]
- Radi, F.Z.; Bouhrim, M.; Mechchate, H.; Al-zahranu, M.; Qurtam, A.A.; Aleissa, A.M.; Drioiche, A.; Handaq, N.; Zair, T. Phytochemical Analysis, Antimicrobial and Antioxidant Properties of Thymus zygis L. and Thymus willdenowii Boiss. Essential Oils. Plants 2022, 11, 15. [Google Scholar] [CrossRef]
- Fernández-Sestelo, M.; Carrillo, J. Environmental Effects on Yield and Composition of Essential Oil in Wild Populations of Spike Lavender (Lavandula latifolia Medik.). Agriculture 2020, 10, 626. [Google Scholar] [CrossRef]
- Karalija, E.; Dahija, S.; Tarkowski, P.; Ćavar Zeljković, S. Influence of Climate-Related Environmental Stresses on Economically Important Essential Oils of Mediterranean Salvia Sp. Front. Plant Sci. 2022, 13, 864807. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, A. Secondary Metabolites and Their Antioxidant Capacity of Caucasian Endemic Thyme (Thymus transcaucasicus Ronn.) as Affected by Environmental Stress. J. Appl. Res. Med. Aromat. Plants 2019, 13, 100209. [Google Scholar] [CrossRef]
- Seyedi, F.S.; Nafchi, M.G.; Reezi, S. Effects of Light Spectra on Morphological Characteristics, Primary and Specialized Metabolites of Thymus vulgaris L. Heliyon 2024, 10, e23032. [Google Scholar] [CrossRef]
- Pérez-Romero, L.F.; Stirling, P.J.; Hancock, R.D. Light-Emitting Diodes Improve Yield, Quality and Inhibitory Effects on Digestive Enzymes of Strawberry. Sci. Hortic. 2024, 332, 113192. [Google Scholar] [CrossRef]
- Solbach, J.A.; Fricke, A.; Stützel, H. Seasonal Efficiency of Supplemental LED Lighting on Growth and Photomorphogenesis of Sweet Basil. Front. Plant Sci. 2021, 12, 609975. [Google Scholar] [CrossRef]
- Zheng, L.; Van Labeke, M.C. Long-Term Effects of Red-and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants. Front. Plant Sci. 2017, 8, 917. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; van Iersel, M.W. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef]
- Van Brenk, J.B.; Courbier, S.; Kleijweg, C.L.; Verdonk, J.C.; Marcelis, L.F.M. Paradise by the Far-Red Light: Far-Red and Red:Blue Ratios Independently Affect Yield, Pigments, and Carbohydrate Production in Lettuce, Lactuca sativa. Front. Plant Sci. 2024, 15, 1383100. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The Genetic Basis of Flowering Responses to Seasonal Cues. Nat. Publ. Gr. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Blue Radiation Attenuates the Effects of the Red to Far-Red Ratio on Extension Growth but Not on Flowering. Environ. Exp. Bot. 2019, 168, 103871. [Google Scholar] [CrossRef]
- Silva, T.D.; Batista, D.S.; Fortini, E.A.; de Castro, K.M.; Felipe, S.H.S.; Fernandes, A.M.; de Jesus Sousa, R.M.; Chagas, K.; da Silva, J.V.S.; de Freitas Correia, L.N.; et al. Blue and Red Light Affects Morphogenesis and 20-Hydroxyecdisone Content of In Vitro Pfaffia glomerata Accessions. J. Photochem. Photobiol. B Biol. 2020, 203, 111761. [Google Scholar] [CrossRef]
- Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of Light-Emitting Diodes on Phenylpropanoid Biosynthetic Gene Expression and Phenylpropanoid Accumulation in Agastache rugosa. Appl. Biol. Chem. 2020, 63, 25. [Google Scholar] [CrossRef]
- SharathKumar, M.; Luo, J.; Xi, Y.; van Ieperen, W.; Marcelis, L.F.M.; Heuvelink, E. Several Short-Day Species Can Flower under Blue-Extended Long Days, but This Response Is Not Universal. Sci. Hortic. 2024, 325, 112657. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, X.; Xie, Q.; Yu, F. Understanding and Engineering of Aroma Compounds in Crops. Seed Biol. 2024, 3, e001. [Google Scholar] [CrossRef]
- Caven-Quantrill, D.J.; Buglass, A.J. Determination of Volatile Organic Compounds in English Vineyard Grape Juices by Immersion Stir Bar Sorptive Extraction Gas Chromatography-Mass Spectrometry. Flavour Fragr. J. 2007, 22, 206–213. [Google Scholar] [CrossRef]
- Kalaitzoglou, P.; van Ieperen, W.; Harbinson, J.; van der Meer, M.; Martinakos, S.; Weerheim, K.; Nicole, C.C.S.; Marcelis, L.F.M. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. Front. Plant Sci. 2019, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Lin, C.-C. Red Light-Emitting Diode Light Irradiation Improves Root and Leaf Formation in Difficult-to-Propagate Protea cynaroides L. Plantlets In Vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef]
- Kusaka, M.; Samborska, I.A. Measuring Light Spectrum as a Main Indicator of Artificial Sources Quality. J. Coast. Life Med. 2015, 3, 400–406. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An Efficient Framework for Conducting Systematic Literature Reviews in Agricultural Sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, A.; Van Labeke, M.C.; Gobin, B.; Van Huylenbroeck, J. Rooting of Ornamental Cuttings Affected by Spectral Light Quality. Acta Hortic. 2015, 1104, 219–224. [Google Scholar] [CrossRef]
- Cáceres-Cevallos, G.; Martínez-Conesa, C.; García-Aledo, I.; Quílez-Simón, M.; Romero-Espinar, P.; Jordán, M.J. Lavandula latifolia Medik. Grown with Led Emitting Diode Light Technology, an Initial Approach. Acta Hortic. 2023, 1358, 303–309. [Google Scholar] [CrossRef]
- Peçanha, D.A.; Peña, J.Á.M.; Freitas, M.S.M.; Chourak, Y.; Urrestarazu, M. Effect of Light Spectra on Stem Cutting Rooting and Lavender Growth. Acta Sci.-Agron. 2023, 45, e58864. [Google Scholar] [CrossRef]
- Heo, W.J.; Lee, W.C.; Paek, Y.K. Influence of Mixed LED Radiation on the Growth of Annual Plants. J. Plant Biol. 2006, 49, 286–290. [Google Scholar] [CrossRef]
- Randall, W.C.; Lopez, R.G. Comparison of Supplemental Lighting from High-Pressure Sodium Lamps and Light-Emitting Diodes during Bedding Plant Seedling Production. HortScience 2014, 49, 589–595. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth and Acclimation of Impatiens, Salvia, Petunia, and Tomato Seedlings to Blue and Red Light. HortScience 2015, 50, 522–529. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth of Impatiens, Petunia, Salvia, and Tomato Seedlings under Blue, Green, and Red Light-Emitting Diodes. HortScience 2014, 49, 734–740. [Google Scholar] [CrossRef]
- Chen, I.G.J.; Lee, M.S.; Lin, M.K.; Ko, C.Y.; Chang, W. Te Blue Light Decreases Tanshinone IIA Content in Salvia miltiorrhiza Hairy Roots via Genes Regulation. J. Photochem. Photobiol. B Biol. 2018, 183, 164–171. [Google Scholar] [CrossRef]
- Bantis, F.; Radoglou, K. Testing the Potential of LEDs to Enhance Growth and Quality Characteristics of Salvia fruticosa. Hortic. Sci. 2019, 46, 98–106. [Google Scholar] [CrossRef]
- Lee, H.R.; Kim, H.M.; Jeong, H.W.; Hwang, S.J. Growth and Bioactive Compounds of Salvia Plebeia r. Br. Grown under Various Ratios of Red and Blue Light. Horticulturae 2020, 6, 35. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zou, H.; Zhang, L.; Li, S.; Wang, Y. The Combination of Blue and Red LED Light Improves Growth and Phenolic Acid Contents in Salvia miltiorrhiza Bunge. Ind. Crops Prod. 2020, 158, 112959. [Google Scholar] [CrossRef]
- Dorais, M.; Brégard, A.; Ménard, C.; Dansereau, B.; Zyromski, N.; Pepin, S. Indoor Living Green Walls of Aromatic Plants Lit with LEDs. Acta Hortic. 2020, 1287, 117–125. [Google Scholar] [CrossRef]
- Dorais, M.; Brégard, A.; Ménard, C.; Dansereau, B.; Zyromski, N.; Pepin, S. Production of Organic Potted Herbs with LED Supplementary Lighting: Effect on Plant Biomass and Phenols. Acta Hortic. 2020, 1286, 47–54. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A.; Sabzalian, M.R.; Antolín, M.C.; Fiasconaro, M.L.; Sánchez-Díaz, M.; Živčák, M.; Olšovská, K.; Slamka, P.; et al. Thymol, Carvacrol, and Antioxidant Accumulation in Thymus Species in Response to Different Light Spectra Emitted by Light-Emitting Diodes. Food Chem. 2020, 307, 125521. [Google Scholar] [CrossRef]
- Sabzalian, M.R.; Heydarizadeh, P.; Zahedi, M.; Boroomand, A.; Agharokh, M.; Sahba, M.R.; Schoefs, B. High Performance of Vegetables, Flowers, and Medicinal Plants in a Red-Blue LED Incubator for Indoor Plant Production. Agron. Sustain. Dev. 2014, 34, 879–886. [Google Scholar] [CrossRef]
- D’Aquino, L.; Lanza, B.; Gambale, E.; Sighicelli, M.; Menegoni, P.; Modarelli, G.C.; Rimauro, J.; Chianese, E.; Nenna, G.; Fasolino, T.; et al. Growth and Metabolism of Basil Grown in a New-Concept Microcosm under Different Lighting Conditions. Sci. Hortic. 2022, 299, 111035. [Google Scholar] [CrossRef]
- Costine, B.; Zhang, M.; Pearson, B.; Nadakuduti, S.S. Impact of Blue Light on Plant Growth, Flowering and Accumulation of Medicinal Flavones in Scutellaria baicalensis and S. Lateriflora. Horticulturae 2022, 8, 1141. [Google Scholar] [CrossRef]
- Hasan, M.M.; Bashir, T.; Ghosh, R.; Lee, S.K.; Bae, H. An Overview of LEDs’ Effects on the Production of Bioactive Compounds and Crop Quality. Molecules 2017, 22, 1420. [Google Scholar] [CrossRef] [PubMed]
- Szabó, K.; Radácsi, P.; Rajhárt, P.; Ladányi, M.; Németh, É. Stress-Induced Changes of Growth, Yield and Bioactive Compounds in Lemon Balm Cultivars. Plant Physiol. Biochem. 2017, 119, 170–177. [Google Scholar] [CrossRef]
- Askary, M.; Behdani, M.A.; Parsa, S.; Mahmoodi, S.; Jamialahmadi, M. Water Stress and Manure Application Affect the Quantity and Quality of Essential Oil of Thymus Daenensis and Thymus Vulgaris. Ind. Crops Prod. 2018, 111, 336–344. [Google Scholar] [CrossRef]
- Caser, M.; Chitarra, W.; D’Angiolillo, F.; Perrone, I.; Demasi, S.; Lovisolo, C.; Pistelli, L.; Pistelli, L.; Scariot, V. Drought Stress Adaptation Modulates Plant Secondary Metabolite Production in Salvia dolomitica Codd. Ind. Crops Prod. 2019, 129, 85–96. [Google Scholar] [CrossRef]
- Albergaria, E.T.; Oliveira, A.F.M.; Albuquerque, U.P. The Effect of Water Deficit Stress on the Composition of Phenolic Compounds in Medicinal Plants. S. Afr. J. Bot. 2020, 131, 12–17. [Google Scholar] [CrossRef]
- Shelepova, O.V.; Baranova, E.N.; Tkacheva, E.V.; Evdokimenkova, Y.B.; Ivanovskii, A.A.; Konovalova, L.N.; Gulevich, A.A. Aromatic Plants Metabolic Engineering: A Review. Agronomy 2022, 12, 3131. [Google Scholar] [CrossRef]
- Li, R.; Long, J.; Yan, Y.; Luo, J.; Xu, Z.; Liu, X. Addition of White Light to Monochromatic Red and Blue Lights Alters the Formation, Growth, and Dormancy of In Vitro-Grown Solanum tuberosum L. Microtubers. HortScience 2020, 55, 71–77. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED Lighting Enhances Growth Characteristics and Total Phenolic Content of Ocimum basilicum, but Variably Affects Transplant Success. Sci. Hortic. 2016, 198, 277–283. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Marcone, M.F.; Tsao, R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. J. Agric. Food Chem. 2019, 67, 6075–6090. [Google Scholar] [CrossRef]
- Ginzburg, D.N.; Klein, J.D. LED Pre-Exposure Shines a New Light on Drought Tolerance Complexity in Lettuce (Lactuca sativa) and Rocket (Eruca sativa). Environ. Exp. Bot. 2020, 180, 104240. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Effects of Light Quality on Growth and Phytonutrient Accumulation of Herbs under Controlled Environments. Horticulturae 2017, 3, 36. [Google Scholar] [CrossRef]
- Appolloni, E.; Pennisi, G.; Zauli, I.; Carotti, L.; Paucek, I.; Quaini, S.; Orsinia, F.; Gianquinto, G. Beyond Vegetables: Effects of Indoor LED Light on Specialized Metabolite Biosynthesis in Medicinal and Aromatic Plants, Edible Flowers, and Microgreens. J. Sci. Food Agric. 2021, 102, 472–487. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Saleh, M.A. Effect of Exposure to Light Emitted Diode (LED) Lights on Essential Oil Composition of Sweet Mint Plants. J. Environ. Sci. Heal.-Part A 2019, 54, 435–440. [Google Scholar] [CrossRef]
- Lin, K.H.; Huang, M.Y.; Hsu, M.H. Morphological and Physiological Response in Green and Purple Basil Plants (Ocimum basilicum) under Different Proportions of Red, Green, and Blue LED Lightings. Sci. Hortic. 2021, 275, 109677. [Google Scholar] [CrossRef]
- Suh, D.H.; Kim, Y.X.; Jung, E.S.; Lee, S.; Park, J.; Lee, C.H.; Sung, J. Characterization of Metabolic Changes under Low Mineral Supply (N, K, or Mg) and Supplemental LED Lighting (Red, Blue, or Red-Blue Combination) in Perilla frutescens Using a Metabolomics Approach. Molecules 2020, 25, 4714. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.B.; Clausen, M.R.; Kjaer, K.H. Spectral Quality of Supplemental LED Grow Light Permanently Alters Stomatal Functioning and Chilling Tolerance in Basil (Ocimum basilicum L.). Sci. Hortic. 2018, 227, 38–47. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Wanichananan, P.; Janta, S.; Toojinda, T.; Terence Darwell, C.; Mosaleeyanon, K. The Influence of Different Light Spectra on Physiological Responses, Antioxidant Capacity and Chemical Compositions in Two Holy Basil Cultivars. Sci. Rep. 2022, 12, 588. [Google Scholar] [CrossRef]
- Araújo, D.X.; Rocha, T.T.; de Carvalho, A.A.; Bertolucci, S.K.V.; Medeiros, A.P.R.; Ribeiro, F.N.S.; Barbosa, S.M.; Pinto, J.E.B.P. Photon Flux Density and Wavelength Influence on Growth, Photosynthetic Pigments and Volatile Organic Compound Accumulation in Aeollanthus suaveolens (Catinga-de-Mulata) under In Vitro Conditions. Ind. Crops Prod. 2021, 168, 113597. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue Light Added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. LED Light Mediates Phenolic Accumulation and Enhances Antioxidant Activity in Melissa officinalis L. under Drought Stress Condition. Protoplasma 2020, 257, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Barbi, S.; Barbieri, F.; Bertacchini, A.; Montorsi, M. Statistical Optimization of a Hyper Red, Deep Blue, and White Leds Light Combination for Controlled Basil Horticulture. Appl. Sci. 2021, 11, 9279. [Google Scholar] [CrossRef]
- Taulavuori, K.; Pyysalo, A.; Taulavuori, E.; Julkunen-Tiitto, R. Responses of Phenolic Acid and Flavonoid Synthesis to Blue and Blue-Violet Light Depends on Plant Species. Environ. Exp. Bot. 2018, 150, 183–187. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Długosz-grochowska, O.; Kołton, A.; Zupnik, M. Effects of LED Supplemental Lighting on Yield and Some Quality Parameters of Lamb’s Lettuce Grown in Two Winter Cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Both, A.; Bourget, C.M.; Burr, J.F.; Kubota, C.; Lopez, R.G.; Morrow, R.C.; Runkle, E.S. LEDs: The Future of Greenhouse Lighting! Chron. Horticult. 2012, 52, 6–12. [Google Scholar]
- Huang, L.; Xiao, Y.; Ran, J.; Wei, L.; Li, Z.; Li, Y.; Zhang, X.; Liao, L.; Wang, D.; Zhao, X.; et al. Drought Tolerance of Faba Bean (Vicia faba L.) Can Be Improved by Specific LED Light Wavelengths. Photosynthetica 2020, 58, 1040–1052. [Google Scholar] [CrossRef]
- Amoozgar, A.; Mohammadi, A.; Sabzalian, M.R. Impact of Light-Emitting Diode Irradiation on Photosynthesis, Phytochemical Composition and Mineral Element Content of Lettuce Cv. Grizzly. Photosynthetica 2017, 55, 85–95. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Oh, M.M. Physiological and Biochemical Responses of Green and Red Perilla to LED-Based Light. J. Sci. Food Agric. 2021, 101, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Agrawal, D.C.; Lee, M.R.; Lee, R.J.; Kuo, C.L.; Wu, C.R.; Tsay, H.S.; Chang, H.C. Influence of LED Light Spectra on In Vitro Somatic Embryogenesis and LC-MS Analysis of Chlorogenic Acid and Rutin in Peucedanum japonicum Thunb.: A Medicinal Herb. Bot. Stud. 2016, 57, 9. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.G.; Meng, Q.; Runkle, E.S. Blue Radiation Signals and Saturates Photoperiodic Flowering of Several Long-Day Plants at Crop-Specific Photon Flux Densities. Sci. Hortic. 2020, 271, 2–6. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, M.; Zhang, J.; Song, Z. Involvement of CONSTANS-like Proteins in Plant Flowering and Abiotic Stress Response. Int. J. Mol. Sci. 2023, 24, 16585. [Google Scholar] [CrossRef]
- Zahid, N.; Alowaiesh, B.F.; Masood, N.; Shafique, K.; Khalid, S.; Khalid, M.S.; Maqbool, M.; Awan, S.I.; Imtiaz, Z. Multi-Locational Study on Plant Growth Regulators to Minimize Pre-Mature Fruit Drop and Maximize Postharvest Quality of Apples. Cogent Food Agric. 2024, 10, 2300178. [Google Scholar] [CrossRef]
Genus | Species | PPFD (µmol⋅m−2⋅s−1) | Light Spectrum Combination | Main Results of the Experiment | Reference |
---|---|---|---|---|---|
Lavandula | Lavandula angustifolia ‘Hidcote’ | 60 | B (100%) | Root dry weight was higher with B light than CC (W light). | [32] |
Lavandula latifolia Medik. | 35 | B (100%) | Foliar area, rosmarinic acid production, and antioxidant activity were higher with B light than under CC (W light). | [33] | |
Lavandula dentata | 66.0 ± 3.8 | W (100%) | Rooting rate was higher when using W LED light enriched with FR than under CC (W LED light). | [34] | |
Salvia | Salvia splendens E Sello ex Ruem & Schult. cv. Red Vista | 90 ± 10 | B:FR (50%:50%) | Relative growth rates and the number of flowering buds were higher with 50B:50FR light than under CC (W light). | [35] |
R:FR (50%:50%) | Shoot elongation and the number of flowering buds were higher with 50B:50FR light than under CC (W light). | ||||
B:R (50%:50%) | Photochemical efficiency of PSII was higher with 50B:50R light than under CC (W light). | ||||
Salvia splendens Sellow ex Roem. & Schult. ‘Vista Red’, | 100 | B:R (30%:70%) | The quality index and relative chlorophyll content were higher with 30B:70R light than under CC (W light). | [36] | |
Salvia splendens ‘Vista Red’ | 160 | R (100%) | Biomass, foliar area, and plant height were higher with R light than under CC (W light). | [37,38] | |
Salvia miltiorrhiza | 110 | B (100%) | Diterpenoid tanshinone IIA content was lower with B light than under CC (W light). | [39] | |
B (100%) supplemented with FR (12%) | Production of rosmarinic acid and salvianolic acid B was higher with B light supplemented with FR light than under CC (W light). | ||||
Salvia fruticosa | 200 ± 10 | W (100%) containing moderate B and high R light | Shoot height, leaf area, leaf number, dry-to-fresh weight ratio, and root-to-shoot ratio were higher with W light than under fluorescent light. | [40] | |
Salvia plebeia | 180 | R (100%) | Root dry weight was higher and total phenolic content, flavonoid, and antioxidant activity were lower with R light than control (W light). | [41] | |
B:R (30%:70%) | Photosynthetic rate, stomatal conductance, and bioactive compound content per plant were higher with 30B:70R light than under CC (W light). | ||||
Salvia miltiorrhiza Bunge | 300 | B:R (10%:90%) | Growth index (number of leaves, plant height, and biomass) were higher while stomatal conductance and transpiration rate were lower with 10B:90R light than under CC (W light). | [42] | |
B:R (70%:30%) | Production of the phenolics danshensu, caffeic, 4-coumaric, and rosmarinic acids was higher with 70B:30R light than under CC (W light). | ||||
Salvia officinalis | 47 | W (100%) | Phenolic content was higher with W light than other spectra tested (9B:91R and 6B:52R:42FR). | [43] | |
193 | Ambient light and supplementary light (15R:85B) | Total biomass and phenolic concentration were higher when ambient light was supplemented with 15R:85B LED light. | [44] | ||
Thymus | Thymus vulgaris L. | 300 | R (100%) | Levels of α-terpinene and limonene were higher with R light than under CC (greenhouse light). | [45] |
B:R (30%:70%) | Production of p-cymene was higher with 30B:70R light than under CC (greenhouse light). | ||||
Thymus migricus | R (100%) | Essential oil yield and the production of p-cymene were higher with R light than under CC (greenhouse light). | |||
B (100%) | Thymol levels were higher with B light than under CC (greenhouse light). | ||||
B:R (30%:70%) | Synthesis of γ-terpinene was higher with 30B:70R light than under CC (greenhouse light). | ||||
Thymus kotschyanus | R (100%) | Essential oil yield and the concentration of volatile compounds α-terpinene, limonene, and γ -terpinene were higher with R light than under CC (greenhouse light). | |||
B (100%) | Levels of p-cymene and carvacrol were higher with B light than under CC (greenhouse light). | ||||
Thymus carmanicus | R (100%) | Essential oil yield and limonene production were higher with R light than under CC (greenhouse light). | |||
B (100%) | Levels of thymol were higher with B light than under CC (greenhouse light). | ||||
B:R (30%:70%) | Levels of carvacrol production were higher with 30B:70R light than under CC (greenhouse light). | ||||
Thymus vulgaris L | 120 ± 20 | R (100%) | Synthesis of flavonoids and the volatile compound α-terpinene was higher with R light than under CC (greenhouse light). | [14] | |
B:R (70%:30%) | Production of anthocyanins and the volatile compounds myrcene and γ-terpinene was higher with 70B:30R light than under CC (greenhouse light). |
Species | Experimental Conditions | Changes in Flowering Associated with LED Light Treatment | Reference |
---|---|---|---|
Ocimum basilicum | R:B (70%:30%) 500 µmol⋅m−2⋅s−1 16 h/8 h—light/dark | Flowers opened significantly earlier than under usual greenhouse conditions | [46] |
Ocimum basilicum | R:B (67%:33%) 490 µmol⋅m−2⋅s−1 16 h/8 h—light/dark | Flowers appeared 2 weeks earlier than under control conditions (W light) | [47] |
Scutellaria baicalensis | B (100%) 300 µmol⋅m−2⋅s−1 (First month) 200 µmol⋅m−2⋅s−1 (Second month) 16 h/8 h light/dark | Flowering started in week 5, earlier than under control conditions (W light) | [48] |
Scutellaria lateriflora | B (100%) 300 µmol⋅m−2⋅s−1 (First month) 200 µmol⋅m−2⋅s−1 (Second month) 16 h/8 h light/dark | Flowering started in week 7, earlier than under control conditions (W light) | |
Perilla frutescens | R:B (60%:40%) 100 µmol⋅m−2⋅s−1 13 h/11 h light/dark | 100% of seedlings flowered | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cáceres-Cevallos, G.J.; Jordán, M.J. Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review. Stresses 2024, 4, 627-640. https://doi.org/10.3390/stresses4040040
Cáceres-Cevallos GJ, Jordán MJ. Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review. Stresses. 2024; 4(4):627-640. https://doi.org/10.3390/stresses4040040
Chicago/Turabian StyleCáceres-Cevallos, Gustavo J., and María J. Jordán. 2024. "Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review" Stresses 4, no. 4: 627-640. https://doi.org/10.3390/stresses4040040
APA StyleCáceres-Cevallos, G. J., & Jordán, M. J. (2024). Effects of LED Light on Aromatic Medicinal Plants from Lavandula, Salvia, and Thymus Genera: A Systematic Review. Stresses, 4(4), 627-640. https://doi.org/10.3390/stresses4040040