Impact of the Sensor Temperature on Low Acetone Concentration Detection Using AlGaN/GaN HEMTs †
Abstract
:1. Introduction
2. Device Fabrication and Measurement Setup
3. Sensing Mechanism
4. Results
4.1. Room Temperature Measurements
4.2. High Temperature Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, A. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.S.; Kim, S.; Kim, J.; Mehandru, R.; Ren, F.; Baik, K.; Pearton, S.J.; Gila, B.P.; Abernathy, C.R.; Pan, C.C.; et al. AlGaN/GaN high electron mobility transistor structures for pressure and pH sensing. Phys. Status Solidi (C) 2005, 2, 2684–2687. [Google Scholar] [CrossRef]
- Gajula, D.; Jahangir, I.; Koley, G. High Temperature AlGaN/GaN Membrane Based Pressure Sensors. Micromachines 2018, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Halfaya, Y.; Soltani, A.; Sundaram, S.; Li, X.; Streque, J.; Gmili, Y.E.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Experimental Study and Device Design of NO, NO2, and NH3Gas Detection for a Wide Dynamic and Large Temperature Range Using Pt/AlGaN/GaN HEMT. IEEE Sens. J. 2016, 16, 6828–6838. [Google Scholar] [CrossRef]
- Halfaya, Y.; Bishop, C.; Soltani, A.; Sundaram, S.; Aubry, V.; Voss, P.; Salvestrini, J.P.; Ougazzaden, A. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors 2016, 16, 273. [Google Scholar] [CrossRef] [PubMed]
- Sama, N.Y.; Bouhnane, H.; Gautier, S.; Ahaitouf, A.; Matray, J.M.; Salvestrini, J.P.; Ougazzaden, A.; Hathcock, A.; He, D.; Vuong, T.Q.P.; et al. Investigation of Sc2O3 Based All-Solid-State EIS Structure for AlGaN/GaN HEMT pH Sensor. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019. [Google Scholar] [CrossRef]
- Yang, J.; Carey, P.; Ren, F.; Mastro, M.A.; Beers, K.; Pearton, S.J.; Kravchenko, I.I. Zika virus detection using antibody-immobilized disposable cover glass and AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2018, 113, 032101. [Google Scholar] [CrossRef]
- Kao, K.W.; Hsu, M.C.; Chang, Y.H.; Gwo, S.; Yeh, J.A. A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs. Sensors 2012, 12, 7157–7168. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, R.; Müller, G.; Ambacher, O.; Stutzmann, M. High-Electron-Mobility AlGaN/GaN Transistors (HEMTs) for Fluid Monitoring Applications. Phys. Status Solidi (A) 2001, 185, 85–89. [Google Scholar] [CrossRef]
- Pearton, S.J.; Kang, B.S.; Kim, S.; Ren, F.; Gila, B.P.; Abernathy, C.R.; Lin, J.; Chu, S.N.G. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. Condens. Matter 2004, 16, R961–R994. [Google Scholar] [CrossRef]
- Mehandru, R.; Luo, B.; Kang, B.; Kim, J.; Ren, F.; Pearton, S.; Pan, C.C.; Chen, G.T.; Chyi, J.I. AlGaN/GaN HEMT based liquid sensors. Solid-State Electron. 2004, 48, 351–353. [Google Scholar] [CrossRef]
- Sun, J.; Sokolovskij, R.; Iervolino, E.; Santagata, F.; Liu, Z.; Sarro, P.M.; Zhang, G. Characterization of an Acetone Detector Based on a Suspended WO3-Gate AlGaN/GaN HEMT Integrated With Microheater. IEEE Trans. Electron Devices 2019, 66, 4373–4379. [Google Scholar] [CrossRef]
- Rabbaa, S.; Stiens, J. Validation of a triangular quantum well model for GaN-based HEMTs used in pH and dipole moment sensing. J. Phys. D Appl. Phys. 2012, 45, 475101. [Google Scholar] [CrossRef]
N Flow (cm/s) | Acetone Concentration (ppm) | (/ppm) | (%) | Response Time (s) |
---|---|---|---|---|
100 | 30 | 33.3 | 2.7 | 70 |
200 | 60 | 15 | 2.4 | 131 |
300 | 90 | 7 | 1.7 | 166 |
400 | 120 | 6 | 1.9 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahaitouf, A.; Halfaya, Y.; Sundaram, S.; Gautier, S.; Voss, P.; Salvestrini, J.P.; Ougazzaden, A. Impact of the Sensor Temperature on Low Acetone Concentration Detection Using AlGaN/GaN HEMTs. Eng. Proc. 2020, 2, 58. https://doi.org/10.3390/ecsa-7-08193
Ahaitouf A, Halfaya Y, Sundaram S, Gautier S, Voss P, Salvestrini JP, Ougazzaden A. Impact of the Sensor Temperature on Low Acetone Concentration Detection Using AlGaN/GaN HEMTs. Engineering Proceedings. 2020; 2(1):58. https://doi.org/10.3390/ecsa-7-08193
Chicago/Turabian StyleAhaitouf, Ali, Yacine Halfaya, Suresh Sundaram, Simon Gautier, Paul Voss, Jean Paul Salvestrini, and Abdallah Ougazzaden. 2020. "Impact of the Sensor Temperature on Low Acetone Concentration Detection Using AlGaN/GaN HEMTs" Engineering Proceedings 2, no. 1: 58. https://doi.org/10.3390/ecsa-7-08193
APA StyleAhaitouf, A., Halfaya, Y., Sundaram, S., Gautier, S., Voss, P., Salvestrini, J. P., & Ougazzaden, A. (2020). Impact of the Sensor Temperature on Low Acetone Concentration Detection Using AlGaN/GaN HEMTs. Engineering Proceedings, 2(1), 58. https://doi.org/10.3390/ecsa-7-08193