Removal Efficiency of Pharmaceuticals from Municipal Wastewater by Advanced Treatment Methods †
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiments
2.1.1. UV
2.1.2. O3
2.1.3. GAC
2.1.4. UV/GAC
2.1.5. O3/GAC
2.2. Measurements and Data Analysis
3. Results
3.1. UV
3.2. O3
3.3. GAC
3.4. UV/GAC
3.5. O3/GAC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makowska, M.; Spychała, M.; Gajewska, K. Impact of pharmaceuticals on the individual wastewater treatment system. J. Ecol. Eng. 2024, 25, 257–266. [Google Scholar] [CrossRef]
- Yuan, X.; Qiang, Z.; Ben, W.; Zhu, B.; Qu, J. Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in east China. Environ. Sci. Process. Impacts 2015, 17, 596–605. [Google Scholar] [CrossRef]
- Duan, Y.; Wen, Z.H.; Meng, X.Z.; Chen, L. Occurrence and removal of selected pharmaceuticals in a wastewater treatment plant. Adv. Mater. Res. 2012, 573–574, 534–537. [Google Scholar] [CrossRef]
- Placová, K.; Heviánková, S.; Halfar, J.; Brožová, K.; Motyka, O.; Čabanová, K.; Drabinová, S.; Chromíková, J. The ability of UWWTP to remove NSAIDs: Impact on water quality in the Odra River Czech Republic concerning incoming European legislation. J. Hazard. Mater. Adv. 2024, 16, 100477. [Google Scholar] [CrossRef]
- Placova, K.; Halfar, J.; Brozova, K.; Heviankova, S. Issues of Non-Steroidal Anti-Inflammatory Drugs in Aquatic Environments: A Review Study. Eng. Proc. 2023, 57, 13. [Google Scholar] [CrossRef]
- Rodríguez-Serin, H.; Gamez-Jara, A.; Cruz-Noriega, M.D.L.; Rojas-Flores, S.; Yupanqui, M.R.; Gallozzo-Cárdenas, M.; Cruz-Monzon, J. Literature review: Evaluation of drug removal techniques in municipal and hospital wastewater. Int. J. Environ. Res. Public Health 2022, 19, 13105. [Google Scholar] [CrossRef]
- Kim, I.; Kim, J.S.; Tanaka, H. Estimation of UV dose for the effective degradation of pharmaceuticals in secondary treated wastewater. Mater. Sci. Forum 2014, 804, 213–216. [Google Scholar] [CrossRef]
- Zupanc, M.; Kosjek, T.; Petkovšek, M.; Dular, M.; Kompare, B.; Širok, B.; Blažeka, Ž.; Heath, E. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason. Sonochem. 2013, 20, 1104–1112. [Google Scholar] [CrossRef]
- Doǧruel, S.; Atesci, Z.C.; Aydın, E.; Pehlivanoğlu-Mantaş, E. Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants. Environ. Sci. Pollut. Res. 2020, 27, 45460–45475. [Google Scholar] [CrossRef]
- Pearce, R.; Hogard, S.; Rosenfeldt, E.J.; Salazar-Benites, G.; Bott, C. Upstream ozone or downstream uvaop: Where to manage 1,4-dioxane and other trace contaminants in high-bromide applications of carbon-based advanced water treatment. ACS ES T Eng. 2024, 4, 1847–1859. [Google Scholar] [CrossRef]
- Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.F.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; et al. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon? Sci. Total Environ. 2013, 461–462, 480–498. [Google Scholar] [CrossRef]
- Spit, T.; van der Hoek, J.P.; de Jong, C.; van Halem, D.; de Kreuk, M.; Bicudo, B. Removal of antibiotic resistance from municipal secondary effluents by ozone-activated carbon filtration. Front. Environ. Sci. 2022, 10, 834577. [Google Scholar] [CrossRef]
- Vaidya, R.; Wilson, C.; Salazar-Benites, G.; Pruden, A.; Bott, C. Implementing ozone-bac-gac in potable reuse for removal of emerging contaminants. AWWA Water Sci. 2020, 2, e1203. [Google Scholar] [CrossRef]
- Vatankhah, H.; Szczuka, A.; Mitch, W.A.; Almaraz, N.; Brannum, J.; Bellona, C. Evaluation of enhanced ozone–biologically active filtration treatment for the removal of 1,4-dioxane and disinfection byproduct precursors from wastewater effluent. Environ. Sci. Technol. 2019, 53, 2720–2730. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.F.; Vaidya, R.; Salazar-Benites, G.; Schimmoller, L.; Nading, T.; Wilson, C.; Pruden, A.; Bott, C. Biodegradable dissolved organic carbon profiling reveals capacity of carbon-based potable reuse treatment over a range of operating conditions. AWWA Water Sci. 2023, 5, e1355. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Xie, Z.; Gray, S.; Zhang, J. Assessing the performance of different treatment methods in removing tetracycline from wastewater: Efficiency and cost evaluation. Materials 2025, 18, 2134. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.; Mitch, W.A. Effect of ozonation and biological activated carbon treatment of wastewater effluents on formation of n-nitrosamines and halogenated disinfection byproducts. Environ. Sci. Technol. 2017, 51, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, I.X.; Wang, J.; Wieland, A. Ozone-enhanced biologically active filtration for wastewater reuse. J. AWWA 2015, 107, E685–E692. [Google Scholar] [CrossRef]
- Hogard, S.; Salazar-Benites, G.; Pearce, R.; Nading, T.; Schimmoller, L.; Wilson, C.; Heisig-Mitchell, J.; Bott, C. Demonstration-scale evaluation of ozone–biofiltration–granular activated carbon advanced water treatment for managed aquifer recharge. Water Environ. Res. 2021, 93, 1157–1172. [Google Scholar] [CrossRef]
- Andrade, J.R.d.; Oliveira, M.F.d.; Silva, M.G.C.d.; Vieira, M.G.A. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: A review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127. [Google Scholar] [CrossRef]
- Sokolov, A.; Kråkström, M.; Eklund, P.; Krönberg, L.; Louhi-Kultanen, M. Abatement of amoxicillin and doxycycline in binary and ternary aqueous solutions by gas-phase pulsed corona discharge oxidation. Chem. Eng. J. 2018, 334, 673–681. [Google Scholar] [CrossRef]
- Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Review of organic wastewater compound concentrations and removal in onsite wastewater treatment systems. Environ. Sci. Technol. 2017, 51, 7304–7317. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Pacheco-Juárez, J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. A survey of the presence of pharmaceutical residues in wastewaters. evaluation of their removal using conventional and natural treatment procedures. Molecules 2020, 25, 1639. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A.; Stüber, J.; Herrmann, N.; McDowell, D.; Ried, A.; Kampmann, M.; Teiser, B. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res. 2003, 37, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Sui, Q.; Huang, J.; Lu, S.; Fan, W.; Deng, S. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Front. Environ. Sci. Eng. 2014, 8, 62–68. [Google Scholar] [CrossRef]
- Gagnon, C.; Lajeunesse, A.; Cejka, P.; Gagné, F.; Hausler, R. Degradation of Selected Acidic and Neutral Pharmaceutical Products in a Primary-Treated Wastewater by Disinfection Processes. Ozone Sci. Eng. 2008, 30, 387–392. [Google Scholar] [CrossRef]
- Quintão, F.; Freitas, J.; Machado, C.; Aquino, S.; Silva, S.; Afonso, R. Characterization of metformin by-products under photolysis, photocatalysis, ozonation and chlorination by high performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC/HRMS). Rapid Commun. Mass Spectrom. 2016, 30, 2419–2428. [Google Scholar] [CrossRef]
- Carbuloni, C.; Savoia, J.; Santos, J.; Pereira, C.; Ganascom Marques, R.; Ribeiro, V.A.; Ferrari, A.M. Degradation of metformin in water by TiO2–ZrO2 photocatalysis. J. Environ. Manag. 2020, 262, 110347. [Google Scholar] [CrossRef]
- Brienza, M.; Nir, S.; Plantard, G.; Goetz, V.; Chiron, S. Combining micelle–clay sorption with solar photo-Fenton processes for domestic wastewater treatment. Environ. Sci. Pollut. Res. 2019, 26, 3717–3725. [Google Scholar] [CrossRef]
- Jodeh, S.; Abdelwahab, F.; Jaradat, N.; Warad, I.; Jodeh, W. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). J. Assoc. Arab Univ. Basic Appl. Sci. 2016, 20, 32–38. [Google Scholar] [CrossRef]
- Kennedy, A.M.; Summers, R.S. Effect of DOM size on organic micropollutant adsorption by GAC. Environ. Sci. Technol. 2015, 49, 6617–6624. [Google Scholar] [CrossRef]
- Cantoni, B.; Ianes, J.; Bertolo, B.; Ziccardi, S.; Maffini, F.; Antonelli, M. Adsorption on activated carbon combined with ozonation for the removal of contaminants of emerging concern in drinking water. J. Environ. Manag. 2024, 350, 119537. [Google Scholar] [CrossRef]
- Hethnawi, A.; Alnajjar, M.; Manasrah, A.D.; Hassan, A.; Vitale, G.; Jeong, R.; Nassar, N.N. Metformin removal from water using fixed-bed column of silica–alumina composite. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124814. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malíková, P.; Chromíková, J.; Biskup, D. Removal Efficiency of Pharmaceuticals from Municipal Wastewater by Advanced Treatment Methods. Eng. Proc. 2025, 116, 18. https://doi.org/10.3390/engproc2025116018
Malíková P, Chromíková J, Biskup D. Removal Efficiency of Pharmaceuticals from Municipal Wastewater by Advanced Treatment Methods. Engineering Proceedings. 2025; 116(1):18. https://doi.org/10.3390/engproc2025116018
Chicago/Turabian StyleMalíková, Petra, Jitka Chromíková, and Denis Biskup. 2025. "Removal Efficiency of Pharmaceuticals from Municipal Wastewater by Advanced Treatment Methods" Engineering Proceedings 116, no. 1: 18. https://doi.org/10.3390/engproc2025116018
APA StyleMalíková, P., Chromíková, J., & Biskup, D. (2025). Removal Efficiency of Pharmaceuticals from Municipal Wastewater by Advanced Treatment Methods. Engineering Proceedings, 116(1), 18. https://doi.org/10.3390/engproc2025116018

