Background/Objectives: The implementation of artificial intelligence-based systems for disease detection using biomedical signals is challenging due to the limited availability of training data. This paper deals with the generation of synthetic EEG signals using deep learning-based models, to be used in future research
[...] Read more.
Background/Objectives: The implementation of artificial intelligence-based systems for disease detection using biomedical signals is challenging due to the limited availability of training data. This paper deals with the generation of synthetic EEG signals using deep learning-based models, to be used in future research for training Parkinson’s disease detection systems.
Methods: Linear models, such as AR, MA, and ARMA, are often inadequate due to the inherent non-linearity of time series. To overcome this drawback, long short-term memory (LSTM) networks are proposed to learn long-term dependencies in non-linear EEG time series and subsequently generate synthetic signals to enhance the training of detection systems. To learn the forward and backward time dependencies in the EEG signals, a Bidirectional LSTM model has been implemented. The LSTM model was trained on the UC San Diego Resting State EEG Dataset, which includes samples from two groups: individuals with Parkinson’s disease and a healthy control group.
Results: To determine the optimal number of cells in the model, we evaluated the mean squared error (MSE) and cross-correlation between the original and synthetic signals. This method was also applied to select the length of the hidden state vector. The number of hidden cells was set to 14, and the length of the hidden state vector for each cell was fixed at 4. Increasing these values did not improve MSE or cross-correlation and unnecessarily increased computational complexity. The proposed model’s performance was evaluated using the mean-squared error (MSE), Pearson’s correlation coefficient, and the power spectra of the synthetic and original signals, demonstrating the suitability of the proposed method for this application.
Conclusions: The proposed model was compared to Autoregressive Moving Average (ARMA) models, demonstrating superior performance. This confirms that deep learning-based models, such as LSTM, are strong alternatives to statistical models like ARMA for handling non-linear, multifrequency, and non-stationary signals.
Full article