Previous Issue
Volume 6, March
 
 

J. Nanotheranostics, Volume 6, Issue 2 (June 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 1444 KiB  
Review
Pharmacoscintigraphy: Advancing Nanotheranostic Development Through Radionuclide Imaging
by María Jimena Salgueiro, Marcela Analia Moretton, Vanina Medina, Diego Chiappetta and Marcela Zubillaga
J. Nanotheranostics 2025, 6(2), 12; https://doi.org/10.3390/jnt6020012 - 21 Apr 2025
Viewed by 248
Abstract
Pharmacoscintigraphy has emerged as an essential tool in the research and development of nanomedicines, particularly in the field of nanotheranostics. By enabling the real-time, non-invasive tracking of their biodistribution, pharmacokinetics, and therapeutic efficacy, these imaging techniques provide invaluable insights that drive the optimization [...] Read more.
Pharmacoscintigraphy has emerged as an essential tool in the research and development of nanomedicines, particularly in the field of nanotheranostics. By enabling the real-time, non-invasive tracking of their biodistribution, pharmacokinetics, and therapeutic efficacy, these imaging techniques provide invaluable insights that drive the optimization of nanomedicine formulations. The integration of gamma scintigraphy, SPECT, and PET imaging has significantly enhanced our understanding of nanocarrier behavior, supporting their clinical translation by ensuring precise targeting, minimizing off-target effects, and improving therapeutic outcomes. Future advancements in hybrid imaging modalities, novel radionuclide tracers, and personalized imaging-guided therapies will further expand the impact of pharmacoscintigraphy in nanomedicine. Additionally, the increasing recognition of imaging-based validation in regulatory approval processes underscores the growing importance of these techniques in drug development. As nanotheranostics continues to evolve, radionuclide imaging will remain a pivotal component in their preclinical and clinical evaluation, facilitating safer and more effective precision medicine approaches. Full article
Show Figures

Figure 1

17 pages, 1503 KiB  
Review
Evolution of Theranostic Nanoparticles Through the Lens of Patents
by Danielle Teixeira Freire, Júlio Abreu Miranda, Douglas Dourado and Éverton do Nascimento Alencar
J. Nanotheranostics 2025, 6(2), 11; https://doi.org/10.3390/jnt6020011 - 9 Apr 2025
Viewed by 384
Abstract
Theranostic nanoparticles integrate diagnostic and therapeutic potential, representing a promising approach in precision medicine. Accordingly, numerous inventions have been patented to protect novel formulations and methods. This review examines the evolution of patented theranostic nanoparticles, focusing on organic nanosystems, particularly polymeric and lipid [...] Read more.
Theranostic nanoparticles integrate diagnostic and therapeutic potential, representing a promising approach in precision medicine. Accordingly, numerous inventions have been patented to protect novel formulations and methods. This review examines the evolution of patented theranostic nanoparticles, focusing on organic nanosystems, particularly polymeric and lipid nanoparticles, to assess their development, technological advances, and patentability. A scoping review approach was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines in the World Intellectual Property Organization (WIPO) and European Patent Office (EPO) database. The search included patents filed within the last ten years (2014–2024) that specifically claimed organic and/or hybrid theranostic nanoparticles. Data extraction focused on nanoparticle composition, synthesis methods, functionalization strategies, and theranostic applications. The search identified 130 patents, of which 13 met the inclusion criteria. These patents were primarily filed by inventors from the United States, Canada, Great Britain, Italy, and China. Polymeric nanoparticles were frequently engineered for targeted drug delivery and imaging, utilizing hyperbranched polyesters, sulfated polymers, or chitosan-based formulations. Lipid nanoparticles were often hybridized with inorganic nanomaterials or magnetic nanostructures to enhance their theranostic potential. While most patents detailed synthesis methods and physicochemical characterizations, only a few provided comprehensive preclinical validation, limiting their demonstrated efficacy. The analysis of recent patents highlights significant advances in the design and application of theranostic nanoparticles. However, a notable gap remains in validating these nanosystems for clinical translation. Future efforts should emphasize robust preclinical data, including in vitro and in vivo assessments, to enhance patent quality and applicability to substantiate the claimed theranostic capabilities. Full article
Show Figures

Figure 1

61 pages, 5582 KiB  
Review
Nanotheranostics Revolutionizing Gene Therapy: Emerging Applications in Gene Delivery Enhancement
by Paula Guzmán-Sastoque, Cristian F. Rodríguez, María Camila Monsalve, Stiven Castellanos, Andrés Manrique-Moreno, Luis H. Reyes and Juan C. Cruz
J. Nanotheranostics 2025, 6(2), 10; https://doi.org/10.3390/jnt6020010 - 9 Apr 2025
Viewed by 740
Abstract
Nanotheranostics—where nanoscale materials serve both diagnostic and therapeutic functions—are rapidly transforming gene therapy by tackling critical delivery challenges. This review explores the design and engineering of various nanoparticle systems (lipid-based, polymeric, inorganic, and hybrid) to enhance stability, targeting, and endosomal escape of genetic [...] Read more.
Nanotheranostics—where nanoscale materials serve both diagnostic and therapeutic functions—are rapidly transforming gene therapy by tackling critical delivery challenges. This review explores the design and engineering of various nanoparticle systems (lipid-based, polymeric, inorganic, and hybrid) to enhance stability, targeting, and endosomal escape of genetic payloads. We discuss how real-time imaging capabilities integrated into these platforms enable precise localization and controlled release of genes, improving treatment efficacy while reducing off-target effects. Key strategies to overcome delivery barriers (such as proton sponge effect and photothermal disruption) and to achieve nuclear localization are highlighted, along with recent advances in stimuli-responsive systems that facilitate spatiotemporal control of gene expression. Clinical trials and preclinical studies demonstrate the expanding role of nanotheranostics in managing cancer, inherited disorders, and cardiovascular and neurological diseases. We further address regulatory and manufacturing hurdles that must be overcome for the widespread clinical adoption of nanoparticle-based gene therapies. By synthesizing recent progress and ongoing challenges, this review underscores the transformative potential of nanotheranostics for effective, targeted, and image-guided gene delivery. Full article
Show Figures

Figure 1

34 pages, 3131 KiB  
Review
Advanced Nanoparticles in Combating Antibiotic Resistance: Current Innovations and Future Directions
by Dana Mohammed AlQurashi, Tayf Fahad AlQurashi, Raneia Idrees Alam, Sumera Shaikh and Mariam Abdulaziz M. Tarkistani
J. Nanotheranostics 2025, 6(2), 9; https://doi.org/10.3390/jnt6020009 - 23 Mar 2025
Viewed by 1030
Abstract
Antibiotic resistance poses a significant global health challenge, undermining the effectiveness of conventional treatments and increasing mortality rates worldwide. Factors such as the overuse and misuse of antibiotics in healthcare and agriculture, along with poor infection control practices, have accelerated the emergence of [...] Read more.
Antibiotic resistance poses a significant global health challenge, undermining the effectiveness of conventional treatments and increasing mortality rates worldwide. Factors such as the overuse and misuse of antibiotics in healthcare and agriculture, along with poor infection control practices, have accelerated the emergence of resistant bacterial strains. The stagnation in the development of new antibiotics, compounded by economic and biological challenges, has necessitated alternative approaches to combat resistant infections. Nanotechnology provides a promising solution using nanoparticles (NPs), which combat bacteria through mechanisms like membrane disruption and reactive oxygen species (ROS) generation. Metal-based nanoparticles such as silver and zinc oxide possess intrinsic antimicrobial properties, while polymer- and carbon-based nanoparticles enhance drug delivery and biofilm penetration. Unlike conventional antibiotics, nanoparticles operate through multi-mechanistic pathways, reducing the likelihood of resistance development and improving treatment efficacy. This review aims to provide an updated, in-depth look at recent advances in nanoparticle research targeting antibiotic resistance, discussing different types of nanoparticles, mechanisms of action, and current challenges and opportunities. By exploring the evolving role of nanotechnology in addressing this crisis, this review intends to highlight the potential for nanoparticles to transform the treatment landscape for resistant bacterial infections and inspire further research into these innovative solutions. Full article
(This article belongs to the Special Issue Carbon Nanomaterials as Nano-Theranostic Tools in Disease Treatment)
Show Figures

Figure 1

Previous Issue
Back to TopTop