Current Advances in the Cancer Therapeutic Applications of Metal–Organic Frameworks Associated with Quantum Dots
Abstract
:1. Introduction
2. History of MOFs at the Nanoscale Level
3. Properties That Enhance the QD–MOF Hybrids Based Drug Delivery
4. The QD–MOF Hybrids as Biosensors for Sensing and Detection
5. The QD–MOF Hybrids as Drug Delivery Vehicles with a Focus on Cancer Therapeutics
QD–MOF Hybrid System | Author | Key Aspects | Citation |
---|---|---|---|
ZIF-8/GQD | Tian et al. | The hybrid system was loaded with DOX to investigate synergistic breast cancer therapy. | [83] |
BQ-MIL@cat-MIL | Liu et al. | This system was utilized for synergistic PDT/PTT treatment against hypoxic tumor cells. | [91] |
AS1411@PEGMA@GQD@γ-CD-MOF | Jia et al. | This system was also loaded with DOX for tumor treatment in vitro and in vivo. | [92] |
MIL-53@CMC/GQDs | Pooresmaeil et al. | DOX loaded MIL-53@CMC/GQDs investigated the biocompatibility and therapeutic ability against human breast cancer. | [93] |
GQDs@Bio-MOF | Hassanpouraghdam et al. | The hybrid system was loaded with 5-Fu to study colon-specific delivery. | [94] |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MOFs | Metal–organic frameworks |
QDs | Quantum dots |
NPs | Nanoparticles |
NMOFs | Nanoscale metal–organic frameworks |
BPEI | Branched poly-(ethylenimine)-capped carbon quantum dots |
ZIF-8 | Zeolitic imidazolate framework-8 |
Cu2+ | Copper ions |
ICP-MS | Inductively coupled plasma mass spectrometry |
g-CNQDs | Graphitic carbon nitrides quantum dots |
Zn-MOF | Zinc-based metal–organic framework |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
HCoV-OC43 | Human coronavirus OC43 |
HCoV-HKU1 | Human coronavirus HKU1 |
MERS-CoV | Middle East respiratory syndrome coronavirus |
RT-PCR | Reverse transcription-polymerase chain reaction |
ECL | Electrochemiluminescence |
PDI | perylene diimide |
IRMOF-3 | Isoreticular metal–organic framework-3 |
NFs | Nanoflowers |
CdS | Cadmium sulfide |
BRCA1 | Breast cancer gene 1 |
CEA | Carcinoembryonic antigen |
Ag | Silver |
Au | Gold |
HE4 | Human epididymis protein 4 |
PTT | Photothermal therapy |
DOX | Doxorubicin |
PDA | Polydopamine |
GQDs | Graphene quantum dots |
NIR | Near infrared radiation |
TILs | Tumor infiltrating lymphocytes |
GSH | Glutathione |
Pt | Platinum |
RA | Rheumatoid arthritis |
ROS | Reactive oxygen species |
H2 | Hydrogen |
HFLS-RA | Human fibroblast-like synoviocytes-rheumatoid arthritis |
MB | Methylene blue |
VIS | Visible |
CIA | Collagen-induced arthritis |
HAECs | Human aortic endothelial cells |
5-Fu | 5-Fluorouracil |
GEM | Gemcitabine |
MIL | Materials Institute Lavoisier |
MGC | chitosan-coated magnetic iron oxide/graphene quantum dots |
FDA | Food and Drug Administration |
AI | Artificial intelligence |
References
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Leus, K.; Muylaert, I.; Van Speybroeck, V.; Marin, G.B.; Van Der Voort, P. A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity. Stud. Surf. Sci. Catal. 2010, 175, 329–332. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.L. Metal–organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43–68. [Google Scholar] [CrossRef]
- Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310. [Google Scholar] [CrossRef]
- Yusuf, V.F.; Malek, N.I.; Kailasa, S.K. Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7, 44507–44531. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Burkholder, E.; Golub, V.; O’Connor, C.J.; Zubieta, J. Solid state coordination chemistry: One-, two-, and three-dimensional materials constructed from molybdophosphonate subunits linked through binuclear copper tetra-2-pyridylpyrazine groups. Inorg. Chem. 2003, 42, 6729–6740. [Google Scholar] [CrossRef]
- Evans, O.R.; Lin, W. Pillared, 3D metal-organic frameworks with rectangular channels. Synthesis and characterization of coordination polymers based on tricadmium carboxylates. Inorg. Chem. 2000, 39, 2189–2198. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.; Heo, J.; Whang, D.; Kim, K. A Two-Dimensional Polyrotaxane with Large Cavities and Channels: A Novel Approach to Metal-Organic Open-Frameworks by Using Supramolecular Building Blocks We gratefully acknowledge the Korean Ministry of Science and Technology (Creative Research Initiative Program) for support of this work and the Korean Ministry of Education (Brain Korea 21 program) for graduate studentships to E.L. and J.H. Angew. Chem. Int. Ed. Engl. 2001, 40, 399–402. [Google Scholar]
- Kim, J.; Chen, B.; Reineke, T.M.; Li, H.; Eddaoudi, M.; Moler, D.B.; O’Keeffe, M.; Yaghi, O.M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247. [Google Scholar] [CrossRef]
- Xu, X.; Nieuwenhuyzen, M.; James, S.L. A nanoporous metal-organic framework based on bulky phosphane ligands. Angew. Chem. Int. Ed. 2002, 41, 764–767. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef]
- Rana, M.K.; Pazzona, F.G.; Suffritti, G.B.; Demontis, P.; Masia, M. Estimation of Partial Charges in Small Zeolite Imidazolate Frameworks from Density Functional Theory Calculations. J. Chem. Theory Comput. 2011, 7, 1575–1582. [Google Scholar] [CrossRef]
- Zheng, S.T.; Zuo, F.; Wu, T.; Irfanoglu, B.; Chou, C.; Nieto, R.A.; Feng, P.; Bu, X. Cooperative assembly of three-ring-based zeolite-type metal-organic frameworks and Johnson-type dodecahedra. Angew. Chem. Int. Ed. Engl. 2011, 50, 1849–1852. [Google Scholar] [CrossRef] [PubMed]
- Hillman, F.; Brito, J.; Jeong, H.K. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations. ACS Appl. Mater. Interfaces 2018, 10, 5586–5593. [Google Scholar] [CrossRef]
- Wisser, D.; Wisser, F.M.; Raschke, S.; Klein, N.; Leistner, M.; Grothe, J.; Brunner, E.; Kaskel, S. Biological Chitin-MOF Composites with Hierarchical Pore Systems for Air-Filtration Applications. Angew. Chem. Int. Ed. Engl. 2015, 54, 12588–12591. [Google Scholar] [CrossRef]
- Bellido, E.; Hidalgo, T.; Lozano, M.V.; Guillevic, M.; Simón-Vázquez, R.; Santander-Ortega, M.J.; González-Fernández, Á.; Serre, C.; Alonso, M.J.; Horcajada, P. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: Toward stealth drug nanocarriers. Adv. Healthc. Mater. 2015, 4, 1246–1257. [Google Scholar] [CrossRef]
- Sun, J.L.; Chen, Y.Z.; Ge BDi Li, J.H.; Wang, G.M. Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal-Organic Framework for Enhanced Tandem Catalysis. ACS Appl. Mater. Interfaces 2019, 11, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Paul, A.K.; Deep, A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene. Forensic Sci. Int. 2014, 242, 88–93. [Google Scholar] [CrossRef]
- Ekimov, A.I.; Onushchenko, A.A.; Ekimov, A.I.; Onushchenko, A.A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETPL 1981, 34, 345. [Google Scholar] [CrossRef]
- Rossetti, R.; Nakahara, S.; Brus, L.E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088. [Google Scholar] [CrossRef]
- Brus, L.E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571. [Google Scholar] [CrossRef]
- Leon, R.; Petroff, P.M.; Leonard, D.; Fafard, S. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots. Science 1995, 267, 1966–1968. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Norberg, N.S.; Nguyen, Q.P.; Parker, J.M.; Gamelin, D.R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218. [Google Scholar] [CrossRef]
- Jack Li, J.; Tsay, J.M.; Michalet, X.; Weiss, S. Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chem. Phys. 2005, 318, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Norberg, N.S.; Kittilstved, K.R.; Amonette, J.E.; Kukkadapu, R.K.; Schwartz, D.A.; Gamelin, D.R. Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc. 2004, 126, 9387–9398. [Google Scholar] [CrossRef] [PubMed]
- Pietryga, J.M.; Schaller, R.D.; Werder, D.; Stewart, M.H.; Klimov, V.I.; Hollingsworth, J.A. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 2004, 126, 11752–11753. [Google Scholar] [CrossRef]
- Radovanovic, P.V.; Norberg, N.S.; McNally, K.E.; Gamelin, D.R. Colloidal transition-metal-doped ZnO quantum dots. J. Am. Chem. Soc. 2002, 124, 15192–15193. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Wang, X.-Y.; Xiao, M. Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface. Opt. Lett. 2002, 27, 1253. [Google Scholar] [CrossRef]
- Komoto, A.; Maenosono, S.; Yamaguchi, Y. Oscillating fluorescence in an unstable colloidal dispersion of CdSe/ZnS core/shell quantum dots. Langmuir 2004, 20, 8916–8923. [Google Scholar] [CrossRef] [PubMed]
- Tablero, C. Energy levels in self-assembled quantum arbitrarily shaped dots. J. Chem. Phys. 2005, 122, 064701. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, P.; Bleszynski, A.C.; Westervelt, R.M.; Huang, J.; Walls, J.D.; Heller, E.J.; Hanson, M.; Gossard, A.C. Imaging a single-electron quantum dot. Nano Lett. 2005, 5, 223–226. [Google Scholar] [CrossRef]
- Wuister, S.F.; Koole, R.; De Donegá, C.M.; Meijerink, A. Temperature-dependent energy transfer in cadmium telluride quantum dot solids. J. Phys. Chem. B 2005, 109, 5504–5508. [Google Scholar] [CrossRef]
- Jarillo-Herrero, P.; Kong, J.; Van Der Zant, H.S.J.; Dekker, C.; Kouwenhoven, L.P.; De Franceschi, S. Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett. 2005, 94, 156802. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, S.H.; Wang, L.W. Stability of the DX- center in GaAs quantum dots. Phys. Rev. Lett. 2005, 94, 185501. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Han, J.; Dong, Q.; Zhang, D.; Guo, Q. In situ synthesis and photoluminescence of QD-CdS on silk fibroin fibers at room temperature. Nanotechnology 2008, 19, 025601. [Google Scholar] [CrossRef]
- Santra, P.K.; Viswanatha, R.; Daniels, S.M.; Pickett, N.L.; Smith, J.M.; O’Brien, P.; Sarma, D.D. Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals. J. Am. Chem. Soc. 2009, 131, 470–477. [Google Scholar] [CrossRef]
- Li, Y.; Song, C.; Wang, Y.; Wei, Y.; Wei, Y.; Hu, Y. High photoluminescence quantum yield of TiO2 nanocrystals prepared using an alcohothermal method. Luminescence 2007, 22, 540–545. [Google Scholar] [CrossRef]
- Li, X.H.; Shao, C.L.; Liu, Y.C.; Chu, X.Y.; Wang, C.H.; Zhang, B.X. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning. J. Chem. Phys. 2008, 129, 114708. [Google Scholar] [CrossRef]
- Dong, W.; Ge, X.; Wang, M.; Xu, S. Labeling of BSA and imaging of mouse T-lymphocyte as well as mouse spleen tissue by L-glutathione capped CdTe quantum dots. Luminescence 2010, 25, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Osakada, Y.; Cui, B. Real-time visualization of axonal transport in neurons. Methods Mol. Biol. 2011, 670, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, S.; Wang, Y.; Lv, Y.; Wu, H.; Ma, X.; Tan, M. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer. Biotechnol. Lett. 2016, 38, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Hanada, S.; Fujioka, K.; Futamura, Y.; Manabe, N.; Hoshino, A.; Yamamoto, K. Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: Their cytotoxicity and biological effect. Int. J. Mol. Sci. 2013, 14, 1323–1334. [Google Scholar] [CrossRef]
- Madani, S.Y.; Shabani, F.; Dwek, M.V.; Seifalian, A.M. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int. J. Nanomed. 2013, 8, 941–950. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, B.R.; Lee, H.J.; Shannon, K.B.; Winiarz, J.G.; Wang, T.C.; Chiang, H.-J.; Huang, Y.-W. Nona-arginine facilitates delivery of quantum dots into cells via multiple pathways. J. Biomed. Biotechnol. 2010, 2010, 948543. [Google Scholar] [CrossRef]
- Paesano, L.; Perotti, A.; Buschini, A.; Carubbi, C.; Marmiroli, M.; Maestri, E.; Iannotta, S.; Marmiroli, N. Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 2016, 374, 18–28. [Google Scholar] [CrossRef]
- Chan, W.H.; Shiao, N.H.; Lu, P.Z. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett. 2006, 167, 191–200. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, T.; Tang, M. Toxicity of quantum dots on target organs and immune system. J. Appl. Toxicol. 2022, 42, 17–40. [Google Scholar] [CrossRef]
- Wang, J.; Imaz, I.; Maspoch, D. Metal−Organic Frameworks: Why Make Them Small? Small Struct. 2022, 3, 2100126. [Google Scholar] [CrossRef]
- Zhong, M.; Kong, L.; Zhao, K.; Zhang, Y.H.; Li, N.; Bu, X.H. Recent Progress of Nanoscale Metal-Organic Frameworks in Synthesis and Battery Applications. Adv. Sci. 2021, 8, 2001980. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.R.; Kim, J.H.; Suh, M.P. Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature. Angew. Chem. Int. Ed. Engl. 2005, 44, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Rieter, W.J.; Taylor, K.M.L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852–9853. [Google Scholar] [CrossRef]
- Lu, W.G.; Su, C.Y.; Lu, T.B.; Jiang, L.; Chen, J.M. Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single-layer walls. J. Am. Chem. Soc. 2006, 128, 34–35. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263. [Google Scholar] [CrossRef]
- Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 2006, 128, 9024–9025. [Google Scholar] [CrossRef]
- Houk, R.J.T.; Jacobs, B.W.; Gabaly FEl Chang, N.N.; Talin, A.A.; Graham, D.D.; House, S.D.; Robertson, I.M.; Allendorf, M.D. Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett. 2009, 9, 3413–3418. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.M.L.; Rieter, W.J.; Lin, W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359. [Google Scholar] [CrossRef]
- Samanta, A.; Furuta, T.; Li, J. Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J. Chem. Phys. 2006, 125, 084714. [Google Scholar] [CrossRef]
- Farrusseng, D.; Daniel, C.; Gaudillère, C.; Ravon, U.; Schuurman, Y.; Mirodatos, C.; Dubbeldam, D.; Frost, H.; Snurr, R.Q. Heats of adsorption for seven gases in three metal-organic frameworks: Systematic comparison of experiment and simulation. Langmuir 2009, 25, 7383–7388. [Google Scholar] [CrossRef]
- Biswas, S.; Grzywa, M.; Nayek, H.P.; Dehnen, S.; Senkovska, I.; Kaskel, S.; Volkmer, D. A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Trans. 2009, 33, 6487–6495. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Yang, Q.; Zhong, C. Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: A computational study. Chemphyschem 2006, 7, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K.-P.; Bjorgen, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 20, 2300–2301. [Google Scholar] [CrossRef] [PubMed]
- Llabrés i Xamena, F.X.; Corma, A.; Garcia, H. Applications for Metal-Organic Frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80–85. [Google Scholar] [CrossRef]
- Buso, D.; Jasieniak, J.; Lay, M.D.H.; Schiavuta, P.; Scopece, P.; Laird, J.; Amenitsch, H.; Hill, A.J.; Falcaro, P. Highly Luminescent Metal–Organic Frameworks Through Quantum Dot Doping. Small 2012, 8, 80–88. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ebrahimnia, M.; Shahbazi, M.A.; Keçili, R.; Ghorbani-Bidkorbeh, F. Microporous metal–organic frameworks: Synthesis and applications. J. Ind. Eng. Chem. 2022, 115, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Ma, D.; Liao, W.; Li, S.; Huang, M.; Liu, H.; Wang, Y.; Xie, R.; Xu, J. A hydrostable anionic zinc-organic framework carrier with a bcu topology for drug delivery. CrystEngComm 2017, 19, 5244–5250. [Google Scholar] [CrossRef]
- Liang, F.; Qin, L.; Xu, J.; Li, S.; Luo, C.; Huang, H.; Ma, D.; Li, Z.; Xu, J. A hydroxyl-functionalized 3D porous gadolinium-organic framework platform for drug delivery, imaging and gas separation. J. Solid State Chem. 2020, 289, 121544. [Google Scholar] [CrossRef]
- Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 2010, 6, 9–24. [Google Scholar] [CrossRef]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.R.; Gowtham, K.; Sheikh, A.; Parvez, S.; Dandela, R.; Kesharwani, P. Recent advances and future prospective of hybrid drug delivery systems. In Woodhead Publishing Series in Biomaterials, Hybrid Nanomaterials for Drug Delivery; Woodhead Publishing: Sawston, UK, 2022; pp. 357–374. [Google Scholar] [CrossRef]
- Singh, S.; Sivaram, N.; Nath, B.; Khan, N.A.; Singh, J.; Ramamurthy, P.C. Metal organic frameworks for wastewater treatment, renewable energy and circular economy contributions. Npj Clean Water 2024, 7, 124. [Google Scholar] [CrossRef]
- Wang, M.; Nian, L.; Cheng, Y.; Yuan, B.; Cheng, S.; Cao, C. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chem. Eng. J. 2021, 426, 130832. [Google Scholar] [CrossRef]
- Lin, X.; Gao, G.; Zheng, L.; Chi, Y.; Chen, G. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal. Chem. 2014, 86, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lin, C.; Hu, Y.; Zan, H.; Xu, X.; Sun, C.; Zou, H.; Li, Y. Sensitive fluorescence biosensor for SARS-CoV-2 nucleocapsid protein detection in cold-chain food products based on DNA circuit and g-CNQDs@Zn-MOF. Lebensm. Wiss. Technol. 2022, 169, 114032. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Du, J.; Jie, G.; Zhou, H. Potential-Resolved Ratio Electrochemiluminescence Biosensor Based on Perylene Diimide-MOF and DNA Nanoflowers-CdS Quantum Dots for Detection of Dual Targets. Anal. Chem. 2024, 96, 13690–13698. [Google Scholar] [CrossRef]
- Liu, X.; Han, D.; Jiang, F.; Liu, S.; Li, Y.; Xu, Z.; Liu, Q.; Wei, Q. Enhanced electrochemiluminescence of CdS QDs encapsulated in IRMOF-3 for sensitive detection of human epithelial protein 4. Talanta 2025, 282, 127052. [Google Scholar] [CrossRef]
- Mehrgou, A.; Akouchekian, M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med. J. Islam. Repub. Iran. 2016, 30, 369. [Google Scholar]
- Khushk, M.; Khan, A.; Rehman, A.; Sheraz, S.; Tunio, Y.M.; Rehman, K.; Rehman, D.; Ahmed, M.; Abbas, K.; E Khan, M. The Role of Tumor Markers: Carcinoembryonic Antigen and Cancer Antigen 15-3 in Patients with Breast Cancer. Cureus 2021, 13, e16298. [Google Scholar] [CrossRef]
- Howell, V.M.; Sundar, R.; Raman, D.; Ribeiro, J.R.; James, N.E.; Chichester, C. Beyond the Biomarker: Understanding the Diverse Roles of Human Epididymis Protein 4 in the Pathogenesis of Epithelial Ovarian Cancer. Front. Oncol. 2018, 8, 124. [Google Scholar] [CrossRef]
- Barhoum, A.; Altintas, Z.; Devi, K.S.S.; Forster, R.J. Electrochemiluminescence biosensors for detection of cancer biomarkers in biofluids: Principles, opportunities, and challenges. Nano Today 2023, 50, 101874. [Google Scholar] [CrossRef]
- Tian, Z.; Yao, X.; Ma, K.; Niu, X.; Grothe, J.; Xu, Q.; Liu, L.; Kaskel, S.; Zhu, Y. Metal-Organic Framework/Graphene Quantum Dot Nanoparticles Used for Synergistic Chemo- and Photothermal Therapy. ACS Omega 2017, 2, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Li, Z.; Qiu, S.; Dai, C.; Wu, S.; Zheng, X.; Guan, M.; Gao, F. Octahedral Pt-MOF with Au deposition for plasmonic effect and Schottky junction enhanced hydrogenothermal therapy of rheumatoid arthritis. Mater. Today Bio 2022, 13, 100214. [Google Scholar] [CrossRef]
- Krystofiak, E.S.; Matson, V.Z.; Steeber, D.A.; Oliver, J.A. Elimination of tumor cells using folate receptor targeting by antibody-conjugated, gold-coated magnetite nanoparticles in a murine breast cancer model. J. Nanomater. 2012, 2012, 431012. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Manna, L. What Defines a Halide Perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Assirey, E.A.R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef]
- Katz, E.A. Perovskite: Name Puzzle and German-Russian Odyssey of Discovery. Helv. Chim. Acta 2020, 103, e2000061. [Google Scholar] [CrossRef]
- Zhao, P.; Jin, Z.; Chen, Q.; Yang, T.; Chen, D.; Meng, J.; Lu, X.; Gu, Z.; He, Q. Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 2018, 9, 4241. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, D.W.; Li, C.X.; Zou, M.Z.; Yu, W.Y.; Liu, M.D.; Peng, S.-Y.; Zhong, Z.-L.; Zhang, X.-Z. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials 2019, 223, 119472. [Google Scholar] [CrossRef]
- Liu, J.; Liu, T.; Du, P.; Zhang, L.; Lei, J. Metal–Organic Framework (MOF) Hybrid as a Tandem Catalyst for Enhanced Therapy against Hypoxic Tumor Cells. Angew. Chem. Int. Ed. 2019, 58, 7808–7812. [Google Scholar] [CrossRef]
- Jia, Q.; Li, Z.; Guo, C.; Huang, X.; Song, Y.; Zhou, N.; Wang, M.; Zhang, Z.; He, L.; Du, M. A γ-cyclodextrin-based metal-organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Nanoscale 2019, 11, 20956–20967. [Google Scholar] [CrossRef] [PubMed]
- Pooresmaeil, M.; Namazi, H.; Salehi, R. Simple method for fabrication of metal-organic framework within a carboxymethylcellulose/graphene quantum dots matrix as a carrier for anticancer drug. Int. J. Biol. Macromol. 2020, 164, 2301–2311. [Google Scholar] [CrossRef] [PubMed]
- Hassanpouraghdam, Y.; Pooresmaeil, M.; Namazi, H. In-vitro evaluation of the 5-fluorouracil loaded GQDs@Bio-MOF capped with starch biopolymer for improved colon-specific delivery. Int. J. Biol. Macromol. 2022, 221, 256–267. [Google Scholar] [CrossRef]
- Liu, J.; Rickel, A.; Smith, S.; Hong, Z.; Wang, C. “Non-cytotoxic” doses of metal-organic framework nanoparticles increase endothelial permeability by inducing actin reorganization. J. Colloid Interface Sci. 2022, 634, 323. [Google Scholar] [CrossRef]
- Schober, C.; Papageorgiou, E.; Harstrick, A.; Bokemeyer, C.; Mugge, A.; Stahl, M.; Wilke, H.; Poliwoda, H.; Hiddemann, W.; Köhne-Wömpner, C.H.; et al. Cardiotoxicity of 5-Fluorouracil in Combination with Folinic Acid in Patients with Gastrointestinal Cancer. Cancer 1993, 72, 2242–2247. [Google Scholar] [CrossRef]
- Sara, J.D.; Kaur, J.; Khodadadi, R.; Rehman, M.; Lobo, R.; Chakrabarti, S.; Herrmann, J.; Lerman, A.; Grothey, A. 5-fluorouracil and cardiotoxicity: A review. Ther. Adv. Med. Oncol. 2018, 10, 1758835918780140. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Das, T.K. Zwitterionic, Stimuli-Responsive Liposomes for Curcumin Drug Delivery: Enhancing M2 Macrophage Polarization and Reducing Oxidative Stress through Enzyme-Specific and Hyperthermia-Triggered Release. ACS Appl. Bio Mater. 2024, 8, 726–740. [Google Scholar] [CrossRef]
- Hassani, S.; Gharehaghaji, N.; Divband, B. Chitosan-coated iron oxide/graphene quantum dots as a potential multifunctional nanohybrid for bimodal magnetic resonance/fluorescence imaging and 5-fluorouracil delivery. Mater. Today Commun. 2022, 31, 103589. [Google Scholar] [CrossRef]
- Resen, A.K.; Atiroğlu, A.; Atiroğlu, V.; Guney Eskiler, G.; Aziz, I.H.; Kaleli, S.; Özacar, M. Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron-based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int. J. Biol. Macromol. 2022, 198, 175–186. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.-X. Title: Development of High-Drug-Loading Nanoparticles Front Piece Development of High-Drug-Loading Nanoparticles. Chempluschem 2020, 85, 2143–2157. [Google Scholar] [CrossRef]
- Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Pathak, R.; Samanta, S.; Sen Sarma, N. A comprehensive analysis of photothermal therapy (PTT) and photodynamic therapy (PDT) for the treatment of cancer. Process Biochem. 2025, 148, 17–31. [Google Scholar] [CrossRef]
- Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018, 37, 266. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, S.; Xu, R.; Wei, Y.; Zhang, J.; Zuo, T.; Wang, Z.; Deng, H.; Yang, N.; Shen, Q. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 2021, 334, 21–33. [Google Scholar] [CrossRef]
- Lam, P.L.; Wong, R.S.M.; Lam, K.H.; Hung, L.K.; Wong, M.M.; Yung, L.H.; Ho, Y.-W.; Wong, W.-Y.; Hau, D.K.-P.; Gambari, R.; et al. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Biol. Interact. 2020, 320, 109023. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. Tumor Microenvironment. Curr. Biol. 2020, 30, R921. [Google Scholar] [CrossRef] [PubMed]
- Huntington, K.E.; Louie, A.; Zhou, L.; Seyhan, A.A.; Maxwell, A.W.; El-Deiry, W.S. Colorectal cancer extracellular acidosis decreases immune cell killing and is partially ameliorated by pH-modulating agents that modify tumor cell cytokine profiles. Am. J. Cancer Res. 2022, 12, 138. [Google Scholar] [PubMed]
- Rodríguez-Gómez, F.D.; Monferrer, D.; Penon, O.; Rivera-Gil, P. Regulatory pathways and guidelines for nanotechnology-enabled health products: A comparative review of EU and US frameworks. Front. Med. 2025, 12, 1544393. [Google Scholar] [CrossRef]
- FDA. Nanotechnology Guidance Documents. Available online: https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-guidance-documents (accessed on 18 April 2025).
- Food and Drug Administration. Drug Products, Including Biological Products, That Contain Nanomaterials Guidance for Industry Contains Nonbinding Recommendations; Food and Drug Administration: Silver Spring, MD, USA, 2022. [Google Scholar]
- Bouffi, C.; Wikenheiser-Brokamp, K.A.; Chaturvedi, P.; Sundaram, N.; Goddard, G.R.; Wunderlich, M.; Brown, N.E.; Staab, J.F.; Latanich, R.; Zachos, N.C.; et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat. Biotechnol. 2023, 41, 824–831. [Google Scholar] [CrossRef]
- Bogoslowski, A.; An, M.; Penninger, J.M. Incorporating Immune Cells into Organoid Models: Essential for Studying Human Disease. Organoids 2023, 2, 140–155. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, J. ChatMOF: An artificial intelligence system for predicting and generating metal-organic frameworks using large language models. Nat. Commun. 2024, 15, 4705. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.; Fairen-Jimenez, D. Guiding the rational design of biocompatible metal-organic frameworks for drug delivery. Matter 2025, 8, 101958. [Google Scholar] [CrossRef]
- Munyebvu, N.; Lane, E.; Grisan, E.; Howes, P.D. Accelerating colloidal quantum dot innovation with algorithms and automation. Mater. Adv. 2022, 3, 6950–6967. [Google Scholar] [CrossRef]
QD–MOF Hybrid System | Author | Key Aspects | Citation |
---|---|---|---|
BPEI-CQDs/ZIF-8 | Lin et al. | This system measured Cu2+ in environmental water samples with sensing sensitivity similar to ICP-MS. | [75] |
g-CNQDs@Zn-MOF | Zhou et al. | A highly sensitive biosensor that rapidly and efficiently detects SARS-CoV-2 N protein. | [76] |
CdS QDs@DNA NFs | Zhang et al. | A dual marker ECL biosensor for early breast cancer screening with high specificity and accuracy. | [77] |
CdS@IRMOF-3 | Liu et al. | Another ECL biosensor for early ovarian cancer detection with very high sensitivity. | [78] |
Drug Release Trigger | Mechanism | QD–MOF Hybrid | Author/Citation |
---|---|---|---|
pH dependent |
|
|
|
|
|
| |
Light | NIR irradiation acts as an external stimulus that disrupts the hybrid system. Its further mode of action is undefined. NIR light might heat up the QDs to expand and destabilize the framework to accelerate drug release. | Pt-MOF@Au@QDs/PDA | Pan et al. [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, A.; Kim, K. Current Advances in the Cancer Therapeutic Applications of Metal–Organic Frameworks Associated with Quantum Dots. J. Nanotheranostics 2025, 6, 13. https://doi.org/10.3390/jnt6020013
Chand A, Kim K. Current Advances in the Cancer Therapeutic Applications of Metal–Organic Frameworks Associated with Quantum Dots. Journal of Nanotheranostics. 2025; 6(2):13. https://doi.org/10.3390/jnt6020013
Chicago/Turabian StyleChand, Abhishu, and Kyoungtae Kim. 2025. "Current Advances in the Cancer Therapeutic Applications of Metal–Organic Frameworks Associated with Quantum Dots" Journal of Nanotheranostics 6, no. 2: 13. https://doi.org/10.3390/jnt6020013
APA StyleChand, A., & Kim, K. (2025). Current Advances in the Cancer Therapeutic Applications of Metal–Organic Frameworks Associated with Quantum Dots. Journal of Nanotheranostics, 6(2), 13. https://doi.org/10.3390/jnt6020013