Evaluation of Industrial Wastewaters as Low-Cost Resources for Sustainable Enzyme Production by Bacillus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Industrial Wastewater Sources
2.2. Microorganisms
2.3. Inoculum Preparation
2.4. Screening of Wastewater Sources for Enzyme Production
2.5. Growth Conditions
2.6. Total Solids (TSs) and Total Volatile Solids (TVSs)
2.7. Suspended Solids (SSs) and Suspended Volatile Solids (SVSs)
2.8. Protease Assay
2.9. Lipase Assay
2.10. Amylase Assay
2.11. Optimization of Fermentation Parameters Using Box–Behnken Design
2.12. Bench Scale—5 Liter Bioreactors Fermentation
3. Results and Discussion
3.1. Characterization of Wastewaters
3.2. Screening of Wastewater Sources for Potential Enzyme Production
3.2.1. Bacterial Growth on Wastewater
3.2.2. Enzyme Production Potential
3.3. Optimization of Enzyme Production
3.3.1. Optimization of Protease Production
3.3.2. Optimization of Lipase Production
3.3.3. Optimization of Amylase Production
3.4. Enzyme Production in 5 L Bioreactor
3.4.1. Production of Protease Using Bacillus megaterium
3.4.2. Bioreactor Production of Amylase Using Bacillus amyloliquefaciens
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vea, E.B.; Romeo, D.; Thomsen, M. Biowaste valorisation in a future circular bioeconomy. Procedia CIRP 2018, 69, 591–596. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Klitkou, A.; Fevolden, A.M.; Capasso, M. From Waste to Value: Valorisation Pathways for Organic Waste Streams in Circular Bioeconomies; Taylor & Francis: Abingdon, UK, 2019. [Google Scholar]
- Mahjoub, B.; Domscheit, E. Chances and challenges of an organic waste–based bioeconomy. Curr. Opin. Green Sustain. Chem. 2020, 25, 100388. [Google Scholar] [CrossRef]
- Lee, D.-J.; Kim, J.Y.; Park, J.; Choi, Y.-B.; Kim, J.K.; Choi, H.; Tsang, Y.F.; Kwon, E.E. Sustainable organic waste valorisation: A zero-waste approach. Chemosphere 2024, 365, 143365. [Google Scholar] [CrossRef]
- Ahmed, I.; Zia, M.A.; Afzal, H.; Ahmed, S.; Ahmad, M.; Akram, Z.; Sher, F.; Iqbal, H.M. Socio-economic and environmental impacts of biomass valorisation: A strategic drive for sustainable bioeconomy. Sustainability 2021, 13, 4200. [Google Scholar] [CrossRef]
- Godfrey, L.; Görgens, J.F.; Roman, H. Opportunities for Biomass and Organic Waste Valorisation: Finding Alternative Solutions to Disposal in South Africa; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Khan, A. Sustainable Bioconversion of Waste to Value Added Products; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Kathi, S.; Singh, S.; Yadav, R.; Singh, A.N.; Mahmoud, A.E.D. Wastewater and sludge valorisation: A novel approach for treatment and resource recovery to achieve circular economy concept. Front. Chem. Eng. 2023, 5, 1129783. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial enzymes: Industrial progress in 21st century. 3 Biotech 2016, 6, 174. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Singh, S.; Mangla, J.; Singh, S. Evaluation of Aspergillus fumigatus NTCC1222 as a source of enzymes for detergent industry. Resour. Environ. Sustain. 2021, 5, 100030. [Google Scholar] [CrossRef]
- Özbek Yazıcı, S.; Özmen, I. Optimization for coproduction of protease and cellulase from Bacillus subtilis M-11 by the Box–Behnken design and their detergent compatibility. Braz. J. Chem. Eng. 2020, 37, 49–59. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Factories 2020, 19, 169. [Google Scholar] [CrossRef] [PubMed]
- Contesini, F.J.; Melo, R.R.d.; Sato, H.H. An overview of Bacillus proteases: From production to application. Crit. Rev. Biotechnol. 2018, 38, 321–334. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, D. Current development in genetic engineering strategies of Bacillus species. Microb. Cell Factories 2014, 13, 63. [Google Scholar] [CrossRef]
- Choubane, S.; Khelil, O.; Cheba, B.A. Bacillus sp. R2 α-amylase production optimization: Pasta cooking water as medium of amylase production. Afr. J. Biotechnol. 2015, 14, 3184–3189. [Google Scholar]
- Mazhar, H.; Abbas, N.; Hussain, Z.; Sohail, A.; Ali, S. Extracellular lipase production from Bacillus subtilis using agro-industrial waste and fruit peels. Punjab Univ. J. Zool. 2016, 31, 261–267. [Google Scholar]
- Sánchez Blanco, A.; Palacios Durive, O.; Batista Pérez, S.; Díaz Montes, Z.; Pérez Guerra, N. Simultaneous production of amylases and proteases by Bacillus subtilis in brewery wastes. Braz. J. Microbiol. 2016, 47, 665–674. [Google Scholar] [CrossRef]
- Ramkumar, A.; Sivakumar, N.; Gujarathi, A.M.; Victor, R. Production of thermotolerant, detergent stable alkaline protease using the gut waste of Sardinella longiceps as a substrate: Optimization and characterization. Sci. Rep. 2018, 8, 12442. [Google Scholar] [CrossRef]
- Shart, A.O.; Elkhalil, E.A. Biochemical characterization of lipase produced by Bacillus spp. isolated from soil and oil effluent. Adv. Enzym. Res. 2020, 8, 39–48. [Google Scholar] [CrossRef]
- Kherouf, M.; Habbeche, A.; Benamia, F.; Saoudi, B.; Kerouaz, B.; Ladjama, A. Statistical optimization of a novel extracellular alkaline and thermostable amylase production from thermophilic Actinomadura keratinilytica sp. Cpt29 and its potential application in detergent industry. Biocatal. Agric. Biotechnol. 2021, 35, 102068. [Google Scholar] [CrossRef]
- Abd-Elhalem, B.T.; El-Sawy, M.; Gamal, R.F.; Abou-Taleb, K.A. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann. Agric. Sci. 2015, 60, 193–202. [Google Scholar] [CrossRef]
- O’Hara, M.B.; Hageman, J.H. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J. Bacteriol. 1990, 172, 4161–4170. [Google Scholar] [CrossRef] [PubMed]
- Eijsink, V.; Matthews, B.; Vriend, G. The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Sci. 2011, 20, 1346–1355. [Google Scholar] [CrossRef]
- Lad, B.C.; Coleman, S.M.; Alper, H.S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 2022, 49, kuab056. [Google Scholar] [CrossRef]
- Atlas, R. Handbook of Microbiological Media, 4th Edition ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological applications of Bacillus licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef]
- Boekema, B.K.H.L.; Beselin, A.; Breuer, M.; Hauer, B.; Koster, M.; Rosenau, F.; Jaeger, K.-E.; Tommassen, J. Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms. Appl. Environ. Microbiol. 2007, 73, 3838–3844. [Google Scholar] [CrossRef]
- Sekhon, A.; Dahiya, N.; Tewari, R.P.; Hoondal, G.S. Production of extracellular lipase by Bacillus megaterium AKG-1 in submerged fermentation. Indian J. Biotechnol. 2006, 5, 179–183. [Google Scholar]
- Karaman, F.; Incekara, U.; Arslan, N.P.; Albayrak, S.; Ortucu, S.; Taskin, M. A New Enzyme for Biodiesel Production and Food Applications: Lipase of Bacillus megaterium F25 Isolated From an Aquatic Insect Rhantus suturalis. GCB Bioenergy 2024, 16, e70009. [Google Scholar] [CrossRef]
- Rajkumar, R.; Jayappriyan, K.R.; Rengasamy, R. Purification and characterization of a protease produced by Bacillus megaterium RRM2: Application in detergent and dehairing industries. J. Basic Microbiol. 2011, 51, 614–624. [Google Scholar] [CrossRef]
- Uttatree, S.; Kobtrakool, K.; Ketsuk, A.; Kaenngam, W.; Thakolprajak, P.; Charoenpanich, J. A novel metal-tolerant, solvent and surfactant stable protease from a new strain of Bacillus megaterium. Biocatal. Agric. Biotechnol. 2017, 12, 228–235. [Google Scholar] [CrossRef]
- Priya, J.D.A.; Divakar, K.; Prabha, M.S.; Selvam, G.P.; Gautam, P. Isolation, purification and characterisation of an organic solvent-tolerant Ca2+-dependent protease from Bacillus megaterium AU02. Appl. Biochem. Biotechnol. 2014, 172, 910–932. [Google Scholar] [CrossRef] [PubMed]
- WoldemariamYohannes, K.; Wan, Z.; Yu, Q.; Li, H.; Wei, X.; Liu, Y.; Wang, J.; Sun, B. Prebiotic, probiotic, antimicrobial, and functional food applications of Bacillus amyloliquefaciens. J. Agric. Food Chem. 2020, 68, 14709–14727. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, B.; Prajapati, V.; Patel, K.; Trivedi, U. Kitchen waste for economical amylase production using Bacillus amyloliquefaciens KCP2. Biocatal. Agric. Biotechnol. 2020, 26, 101654. [Google Scholar] [CrossRef]
- Abd-Elhalim, B.T.; Gamal, R.F.; El-Sayed, S.M.; Abu-Hussien, S.H. Optimizing alpha-amylase from Bacillus amyloliquefaciens on bread waste for effective industrial wastewater treatment and textile desizing through response surface methodology. Sci. Rep. 2023, 13, 19216. [Google Scholar]
Media | SIW | BW | PPMS | FIW |
---|---|---|---|---|
pH | 3.99 ± 0.12 | 5.33 ± 0.19 | 6.65 ± 0.35 | 2.45 ± 0.46 |
TSs (g/L) | 13.2 ± 0.35 | 69 ± 2.65 | 10.3 ± 0.36 | 0 |
TSVs (g/L) | 4.4 ± 0.53 | 47.1 ± 4.22 | 6.09 ± 0.37 | 0 |
SSs (g/L) | 4.44 ± 0.57 | 13.5 ± 2.18 | 9.4 ± 0.36 | 0 |
SSVs (g/L) | 2.4 ± 0.46 | 3.2 ± 0.37 | 2.35 ± 0.18 | 0 |
TOC (g C/L) | 207 ± 30.32 | 345 ± 18.03 | 14 ± 1.00 | 387 ± 31.58 |
TON (g N/L) | 17.5 ± 0.46 | 11 ± 0.87 | 1.4 ± 0.15 | 0.339 ± 0.11 |
P org (g/L) | 3 ± 0.23 | 4.7 ± 0.62 | 2.3 ± 0.36 | 0.039 ± 0.65 |
Na (g/L) | 11.3 ± 1.18 | 0.12 ± 0.86 | 10.2 ± 0.56 | 0.051 ± 0.80 |
Fe (g/L) | 0.1 ± 0.02 | 0.02 ± 0.02 | 0.4 ± 0.17 | 0.001 |
K (g/L) | 7 ± 0.00 | 7.3 ± 0.44 | 1.4 ± 0.30 | 0.56 ± 0.12 |
Ca (g/L) | 3.6 ± 0.36 | 0.2 ± 0.09 | 22 ± 2.65 | 0.086 ± 0.01 |
S (g/L) | 4.2 ± 0.10 | 1.3 ± 0.26 | 3.9 ± 0.95 | 0.0145 ± 0.01 |
Glucose (g/L) | 31.9 ± 0.85 | 0.96 ± 0.19 | 1.9 ± 0.75 | 270 ± 67.27 |
Fructose (g/L) | 11.4 ± 3.90 | 0.38 ± 0.12 | 1.5 ± 0.30 | 34 ± 1.00 |
Lactose (g/L) | 9.1 ± 0.78 | 0.65 ± 0.11 | 0.83 ± 0.05 | 3.5 ± 0.78 |
Sucrose (g/L) | 6.4 ± 0.66 | 0.15 ± 0.08 | 0.97 ± 0.20 | <0.4 |
Galactose (g/L) | 8.7 ± 0.82 | 0.3 ± 0.04 | 1.4 ± 0.13 | <0.400 |
Xylose (g/L) | 7.6 ± 0.10 | 0.7 ± 0.14 | 1.1 ± 0.29 | 3.5 ± 0.70 |
Trehalose (g/L) | 5.7 ± 0.82 | 1.3 ± 0.31 | 0.53 ± 0.08 | <0.4 |
Bacillus Strains | Amylase (U/mL) | Protease (U/mL) | Lipase (U/mL) |
---|---|---|---|
B. amyloliquefaciens SIW | 4.26 ± 0.45 | 11.64 ± 1.76 | 0 |
B. licheniformis SIW | 1.21 ± 0.01 | 25.69 ± 1.46 | 0 |
B. megaterium SIW | 1.95 ± 0.0 | 34.31 ± 4.27 | 0.01 ± 0.0007 |
B. amyloliquefaciens PPMS | 0.34 ± 0.12 | 40.52 | 0 |
B. licheniformis PPMS | 0 | 49.59 ± 2.53 | 0.01 ± 0.0004 |
B. megaterium PPMS | 0.12 ± 0.03 | 53.12 ± 11.46 | 0.01 ± 0.0 |
B. amyloliquefaciens BW | 1.73 ± 0.17 | 25.14 | 0 |
B. licheniformis BW | 0 | 8.85 | 0 |
B. megaterium BW | 0 | 3.97 ± 2.5 | 0 |
Std | Run | Temperature (°C) | TSs (g/L) | Inoculum Size (% v/v) | Protease (U/mL) |
---|---|---|---|---|---|
11 | 1 | 33.5 | 15 | 2 | 36.19 |
9 | 2 | 30 | 20 | 2 | 38.22 |
6 | 3 | 33.5 | 25 | 2 | 38.60 |
8 | 4 | 33.5 | 20 | 3.5 | 39.34 |
1 | 5 | 33.5 | 20 | 3.5 | 39.30 |
7 | 6 | 33.5 | 20 | 3.5 | 38.78 |
4 | 7 | 33.5 | 20 | 3.5 | 38.60 |
16 | 8 | 33.5 | 20 | 3.5 | 40.06 |
12 | 9 | 30 | 25 | 3.5 | 39.19 |
3 | 10 | 30 | 15 | 3.5 | 39.42 |
5 | 11 | 30 | 20 | 5 | 42.56 |
17 | 12 | 33.5 | 15 | 5 | 41.46 |
15 | 13 | 33.5 | 25 | 5 | 42.56 |
2 | 14 | 37 | 15 | 3.5 | 40.02 |
14 | 15 | 37 | 25 | 3.5 | 39.32 |
10 | 16 | 37 | 20 | 2 | 39.23 |
13 | 17 | 37 | 20 | 5 | 40.15 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 27.06 | 2 | 13.53 | 16.67 | 0.0002 | significant |
B—TSs | 0.8363 | 1 | 0.8363 | 1.03 | 0.3273 | |
C—inoculum size | 26.23 | 1 | 26.23 | 32.31 | <0.0001 | |
Residual | 11.36 | 14 | 0.8116 | |||
Lack of Fit | 10.07 | 10 | 1.01 | 3.11 | 0.1424 | notsignificant |
Pure error | 1.29 | 4 | 0.3233 | |||
Cor total | 38.42 | 16 |
Std | Run | Temperature (°C) | TSs (g/L) | Inoculum Size (% v/v) | α-Amylase (U/mL) |
---|---|---|---|---|---|
9 | 1 | 33.5 | 15 | 2 | 2.75 |
6 | 2 | 37 | 20 | 2 | 3.08 |
10 | 3 | 33.5 | 25 | 2 | 4.53 |
16 | 4 | 33.5 | 20 | 3.5 | 3.85 |
13 | 5 | 33.5 | 20 | 3.5 | 4.23 |
3 | 6 | 30 | 25 | 3.5 | 4.26 |
17 | 7 | 33.5 | 20 | 3.5 | 4.19 |
8 | 8 | 37 | 20 | 5 | 2.21 |
11 | 9 | 33.5 | 15 | 5 | 3 |
15 | 10 | 33.5 | 20 | 3.5 | 3.8 |
14 | 11 | 33.5 | 20 | 3.5 | 4.04 |
1 | 12 | 30 | 15 | 3.5 | 3.3 |
2 | 13 | 37 | 15 | 3.5 | 2.19 |
5 | 14 | 30 | 20 | 2 | 3.54 |
7 | 15 | 30 | 20 | 5 | 3.29 |
12 | 16 | 33.5 | 25 | 5 | 3.54 |
4 | 17 | 37 | 25 | 3.5 | 3.51 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 7.42 | 9 | 0.8249 | 31.77 | <0.0001 | significant |
A—temperature | 1.44 | 1 | 1.44 | 55.66 | 0.0001 | |
B—TSs | 2.65 | 1 | 2.65 | 101.88 | <0.0001 | |
C—inoculum size | 0.4325 | 1 | 0.4325 | 16.66 | 0.0047 | |
AB | 0.0324 | 1 | 0.0324 | 1.25 | 0.3008 | |
AC | 0.0961 | 1 | 0.0961 | 3.70 | 0.0958 | |
BC | 0.3844 | 1 | 0.3844 | 14.81 | 0.0063 | |
A2 | 1.35 | 1 | 1.35 | 51.96 | 0.0002 | |
B2 | 0.0837 | 1 | 0.0837 | 3.22 | 0.1156 | |
C2 | 0.7641 | 1 | 0.7641 | 29.43 | 0.0010 | |
Residual | 0.1817 | 7 | 0.0260 | |||
Lack of fit | 0.0311 | 3 | 0.0104 | 0.2748 | 0.8415 | Not significant |
Pure error | 0.1507 | 4 | 0.0377 | |||
Cor total | 7.61 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.; Ndao, A.; Blais, J.-F.; Adjallé, K. Evaluation of Industrial Wastewaters as Low-Cost Resources for Sustainable Enzyme Production by Bacillus Species. Clean Technol. 2025, 7, 45. https://doi.org/10.3390/cleantechnol7020045
Nguyen V, Ndao A, Blais J-F, Adjallé K. Evaluation of Industrial Wastewaters as Low-Cost Resources for Sustainable Enzyme Production by Bacillus Species. Clean Technologies. 2025; 7(2):45. https://doi.org/10.3390/cleantechnol7020045
Chicago/Turabian StyleNguyen, Vu_Mai_Linh, Adama Ndao, Jean-François Blais, and Kokou Adjallé. 2025. "Evaluation of Industrial Wastewaters as Low-Cost Resources for Sustainable Enzyme Production by Bacillus Species" Clean Technologies 7, no. 2: 45. https://doi.org/10.3390/cleantechnol7020045
APA StyleNguyen, V., Ndao, A., Blais, J.-F., & Adjallé, K. (2025). Evaluation of Industrial Wastewaters as Low-Cost Resources for Sustainable Enzyme Production by Bacillus Species. Clean Technologies, 7(2), 45. https://doi.org/10.3390/cleantechnol7020045