Ex Situ Carbon Mineralization for CO2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review
Abstract
:1. Introduction
2. Carbon Mineralization
3. Ex Situ Carbon Mineralization
3.1. Potential Solid Feedstocks
3.1.1. Natural Mineral
3.1.2. Industrial Solid Waste
3.2. Mineralization Pathways
4. Carbon Mineralization Rate and Factors Affecting
4.1. Mineral Properties and Particle Size
4.2. Temperature
4.3. Pressure
4.4. pH Value
4.5. Reaction Time
4.6. Liquid/Solid Ratio
4.7. Reactor Design
5. Carbon Mineralization Using Different Alkaline Solid Wastes
5.1. Iron/Steel Slags
5.2. Cement Waste
5.3. Mine Tailings
6. Pilot Scale Carbon Mineralization Plants
7. Market Analysis
8. Conclusions and Future Prospects
- While carbon mineralization shows great promise, several challenges must be addressed, including maintaining consistent product quality, optimizing large-scale processes, and developing appropriate standards and regulations for integrating carbonated products into construction practices.
- The effectiveness of CO2 mineralization varies depending on the composition of the industrial solid waste, with iron and steel slags showing particularly high potential due to their high alkali content and reactivity.
- Different carbonation methods are suitable for various types of waste. Direct aqueous carbonation and indirect pathways using reagents such as ammonium salts have shown promise for improving reaction kinetics and efficiency.
- The large-scale implementation of CO2 mineralization depends on various factors, including CO2 source characteristics, the availability of alkaline wastes, process scalability, and product market viability.
- Separating carbonated products as a final step of carbonation faces key challenges, including handling diverse product compositions, varying particle sizes, and energy and water demand, which need to be assessed to achieve efficient separation at scale while maintaining product purity.
- Future efforts should focus on large-scale demonstration projects, integration with existing industrial operations, and fundamental research to improve reaction control and efficiency. Moreover, ongoing research to improve process energy consumption is crucial for ensuring net CO2 reductions at industrial scales through life-cycle assessment and techno-economic analysis.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BF | Blast furnace. |
BOF | Basic oxygen furnace. |
Ca | Calcium. |
CBD | Cement bypass dust. |
CCUS | Carbon dioxide capture, utilization, and storage. |
CDR | Carbon dioxide removal. |
CKD | Cement kiln dust. |
CSTRs | Continuous Stirred-Tank Reactors. |
CSW | Cement slurry waste. |
DAC | Direct air capture. |
EAF | Electric arc furnace. |
EOR | Enhanced oil recovery. |
GPV | Gravity pressure vessel. |
IEA | International Energy Agency. |
LCA | Life-cycle assessment. |
LF | Ladle furnace. |
Mg | Magnesium. |
OPC | Ordinary Portland cement. |
PCC | Precipitated calcium carbonate. |
PGMs | Platinum group metals. |
RCP | Recycled cement paste. |
S/L | Solid/liquid ratio. |
SCM | Supplementary cementitious material. |
TRLs | Technology Readiness Levels. |
References
- Zhang, Z.; Zheng, K.; Chen, L.; Yuan, Q. Review on accelerated carbonation of calcium-bearing minerals: Carbonation behaviors, reaction kinetics, and carbonation efficiency improvement. J. Build. Eng. 2024, 86, 108826. [Google Scholar] [CrossRef]
- Gadikota, G. Carbon mineralization pathways for carbon capture, storage and utilization. Commun. Chem. 2021, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Neeraj; Yadav, S. Carbon storage by mineral carbonation and industrial applications of CO2. Mater. Sci. Energy Technol. 2020, 3, 494–500. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Liu, H.; Boczkaj, G.; Cao, Y.; Wang, C. Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives. J. Clean. Prod. 2024, 434, 140258. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change, The Paris Agreement; The Paris Agreement|UNFCCC: Paris, France, 2015.
- Lennan, M.; Morgera, E. The Glasgow Climate Conference (COP26). Int. J. Mar. Coast. Law 2022, 37, 137–151. [Google Scholar] [CrossRef]
- Babamohammadi, S.; Shamiri, A.; Aroua, M.K. A review of CO2 capture by absorption in ionic liquid-based solvents. Rev. Chem. Eng. 2015, 31, 383–412. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Zhang, X.-W.; Mo, Z.-W.; Xu, Y.-Z.; Tian, X.-Y.; Li, Y.; Chen, X.-M.; Zhang, J.-P. Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks. EnergyChem 2019, 1, 100016. [Google Scholar] [CrossRef]
- Shah, S.; Shah, M.; Shah, A.; Shah, M. Evolution in the membrane-based materials and comprehensive review on carbon capture and storage in industries. Emergent Mater. 2020, 3, 33–44. [Google Scholar] [CrossRef]
- Paul, S.; Bera, S.; Dasgupta, R.; Mondal, S.; Roy, S. Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus 2021, 4, 100032. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Liu, H.; Boczkaj, G.; Cao, Y.; Wang, C. A review on carbon storage via mineral carbonation: Bibliometric analysis, research advances, challenges, and perspectives. Sep. Purif. Technol. 2024, 338, 126558. [Google Scholar] [CrossRef]
- Kramer, G.J.; Haigh, M. No quick switch to low-carbon energy. Nature 2009, 462, 568–569. [Google Scholar] [CrossRef] [PubMed]
- IEA. Net Zero by 2050; IEA: Paris, France, 2021. [Google Scholar]
- Sodiq, A.; Abdullatif, Y.; Aissa, B.; Ostovar, A.; Nassar, N.; El-Naas, M.; Amhamed, A. A review on progress made in direct air capture of CO2. Environ. Technol. Innov. 2023, 29, 102991. [Google Scholar] [CrossRef]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current status and pillars of direct air capture technologies. iScience 2022, 25, 103990. [Google Scholar] [CrossRef]
- ElementEnergy. Global Assessment of Direct Air Capture Costs; IEAGHG Technical Report; Global Assessment of Direct Air Capture Costs–IEAGHG: Cheltenham, UK, 2021; p. 97. [Google Scholar]
- Lebling, K.; Leslie-Bole, H.; Byrum, Z.; Bridgwater, L. 6 Things to Know About Direct Air Capture; World Resources Institute: Washington, DC, USA, 2022. [Google Scholar]
- Gutsch, M.; Leker, J. Co-assessment of costs and environmental impacts for off-grid direct air carbon capture and storage systems. Commun. Eng. 2024, 3, 14. [Google Scholar] [CrossRef]
- Nielsen, A.S.E.; Plantinga, A.J.; Alig, R.J. New Cost Estimates for Carbon Sequestration Through Afforestation in the United States; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2014. [Google Scholar]
- Lefebvre, D.; Williams, A.G.; Kirk, G.J.D.; Paul; Burgess, J.; Meersmans, J.; Silman, M.R.; Román-Dañobeytia, F.; Farfan, J.; Smith, P. Assessing the carbon capture potential of a reforestation project. Sci. Rep. 2021, 11, 19907. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.L., Jr.; Pindyck, R.S. A Supply Curve for Forest-Based CO2 Removal; MIT CEEPR, Center for Energy and Environmental Policy Research: Cambridge, MA, USA, 2024. [Google Scholar]
- Torres, A.B.; Marchant, R.; Lovett, J.C.; Smart, J.C.R.; Tipper, R. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol. Econ. 2010, 69, 469–477. [Google Scholar] [CrossRef]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Don, A.; Seidel, F.; Leifeld, J.; Kätterer, T.; Martin, M.; Pellerin, S.; Emde, D.; Seitz, D.; Chenu, C. Carbon sequestration in soils and climate change mitigation-Definitions and pitfalls. Glob. Change Biol. 2024, 30, e16983. [Google Scholar] [CrossRef] [PubMed]
- Sperow, M. What might it cost to increase soil organic carbon using no-till on U.S. cropland? Carbon Balance Manag. 2020, 15, 26. [Google Scholar] [CrossRef]
- Bach, L.T.; Gill, S.J.; Rickaby, R.E.M.; Gore, S.; Renforth, P. CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Front. Clim. 2019, 1, 7. [Google Scholar] [CrossRef]
- Strefler, J.; Amann, T.; Bauer, N.; Kriegler, E.; Hartmann, J. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environ. Res. Lett. 2018, 13, 034010. [Google Scholar] [CrossRef]
- Breunig, H.M.; Fox, P.; Domen, J.; Kumar, R.; Alves, R.J.E.; Zhalnina, K.; Voigtländer, A.; Deng, H.; Arora, B.; Nico, P. Life cycle impact and cost analysis of quarry materials for land-based enhanced weathering in Northern California. J. Clean. Prod. 2024, 476, 143757. [Google Scholar] [CrossRef]
- Spence, E.; Cox, E.; Pidgeon, N. Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Clim. Change 2021, 165, 23. [Google Scholar] [CrossRef]
- Rickels, W.; Rehdanz, K.; Oschlies, A. Economic prospects of ocean iron fertilization in an international carbon market. Resour. Energy Econ. 2012, 34, 129–150. [Google Scholar] [CrossRef]
- Lebling, K.; Northrop, E.; McCormick, C. Ocean-Based Carbon Dioxide Removal: 6 Key Questions, Answered; World Resources Institute: Washington, DC, USA, 2022. [Google Scholar]
- Emerson, D.; Sofen, L.E.; Michaud, A.B.; Archer, S.D.; Twining, B.S. A Cost Model for Ocean Iron Fertilization as a Means of Carbon Dioxide Removal That Compares Ship- and Aerial-Based Delivery, and Estimates Verification Costs. Earth’s Future 2024, 12, e2023EF003732. [Google Scholar] [CrossRef]
- Williamson, P.; Wallace, D.W.R.; Law, C.S.; Boyd, P.W.; Collos, Y.; Croot, P.; Denman, K.; Riebesell, U.; Takeda, S.; Vivian, C. Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Process Saf. Environ. Prot. 2012, 90, 475–488. [Google Scholar] [CrossRef]
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Baylin-Stern, A.; Berghout, N. Is Carbon Capture too Expensive? IEA: Paris, France, 2021. [Google Scholar]
- Nath, F.; Mahmood, M.N.; Yousuf, N. Recent advances in CCUS: A critical review on technologies, regulatory aspects and economics. Geoenergy Sci. Eng. 2024, 238, 212726. [Google Scholar] [CrossRef]
- Seifritz, W. CO2 disposal by means of silicates. Nature 1990, 345, 486. [Google Scholar] [CrossRef]
- Rosa, L.; Becattini, V.; Gabrielli, P.; Andreotti, A.; Mazzotti, M. Carbon dioxide mineralization in recycled concrete aggregates can contribute immediately to carbon-neutrality. Resour. Conserv. Recycl. 2022, 184, 106436. [Google Scholar] [CrossRef]
- Sandalow, D.; Aines, R.; Friedmann, J.; Kelemen, P.; McCormick, C.; Power, I.; Schmidt, B.; Wilson, S. Carbon Mineralization Roadmap; ICEF Innovation Roadmap Project: Tokyo, Japan, 2021. [Google Scholar]
- Kelemen, P.B.; McQueen, N.; Wilcox, J.; Renforth, P.; Dipple, G.; Vankeuren, A.P. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chem. Geol. 2020, 550, 119628. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Aines, R.; Bennett, E.; Benson, S.M.; Carter, E.; Coggon, J.A.; de Obeso, J.C.; Evans, O.; Gadikota, G.; Dipple, G.M.; et al. In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods. Energy Procedia 2018, 146, 92–102. [Google Scholar] [CrossRef]
- Thonemann, N.; Zacharopoulos, L.; Fromme, F.; Nühlen, J. Environmental impacts of carbon capture and utilization by mineral carbonation: A systematic literature review and meta life cycle assessment. J. Clean. Prod. 2022, 332, 130067. [Google Scholar] [CrossRef]
- Zhang, S.; DePaolo, D.J. Rates of CO2 Mineralization in Geological Carbon Storage. Acc. Chem. Res. 2017, 50, 2075–2084. [Google Scholar] [CrossRef]
- Zhang, Y.; Ying, Y.; Xing, L.; Zhan, G.; Deng, Y.; Chen, Z.; Li, J. Carbon dioxide reduction through mineral carbonation by steel slag. J. Environ. Sci. 2025, 152, 664–684. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-W.; Pan, S.-Y.; Chen, C.-T.; Chen, Y.-H.; Chiang, P.-C. High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement. J. Clean. Prod. 2016, 124, 350–360. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Chung, T.-C.; Ho, C.-C.; Hou, C.-J.; Chen, Y.-H.; Chiang, P.-C. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain. Sci. Rep. 2017, 7, 17227. [Google Scholar] [CrossRef]
- Liu, G.; Schollbach, K.; van der Laan, S.; Tang, P.; Florea, M.V.A.; Brouwers, H.J.H. Recycling and utilization of high volume converter steel slag into CO2 activated mortars—The role of slag particle size. Resour. Conserv. Recycl. 2020, 160, 104883. [Google Scholar] [CrossRef]
- Miras, O.M.; Natalia, O. Pilot-Scale Experimental Work on Sustainable Process Method of Production of Precipitated Calcium Carbonate from Steel Slag and Carbon Dioxide. Master Thesis, Aalto University, Espoo, Finland, 2016. [Google Scholar]
- Teir, S.; Kotiranta, T.; Pakarinen, J.; Mattila, H.-P. Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag. J. CO2 Util. 2016, 14, 37–46. [Google Scholar] [CrossRef]
- Li, J.; Luo, M.; Wang, K.; Li, G.; Zhang, G. Review of carbon dioxide mineralization of magnesium-containing materials. Carbon Neutralization 2023, 2, 574–584. [Google Scholar] [CrossRef]
- Li, L.; Yu, H.; Zhou, S.; Dao, V.; Chen, M.; Ji, L.; Benhelal, E. Activation and utilization of tailings as CO2 mineralization feedstock and supplementary cementitious materials: A critical review. Mater. Today Sustain. 2023, 24, 100530. [Google Scholar] [CrossRef]
- Al Baroudi, H.; Awoyomi, A.; Patchigolla, K.; Jonnalagadda, K.; Anthony, E.J. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage. Appl. Energy 2021, 287, 116510. [Google Scholar] [CrossRef]
- Kirmani, F.U.D.; Raza, A.; Ahmad, S.; Arif, M.; Mahmoud, M. A holistic overview of the in-situ and ex-situ carbon mineralization: Methods, mechanisms, and technical challenges. Sci. Total Environ. 2024, 943, 173836. [Google Scholar] [CrossRef]
- Azdarpour, A.; Asadullah, M.; Mohammadian, E.; Hamidi, H.; Junin, R.; Karaei, M.A. A review on carbon dioxide mineral carbonation through pH-swing process. Chem. Eng. J. 2015, 279, 615–630. [Google Scholar] [CrossRef]
- Yadav, S.; Mehra, A. A review on ex situ mineral carbonation. Environ. Sci. Pollut. Res. 2021, 28, 12202–12231. [Google Scholar] [CrossRef]
- Zhou, S.; Li, L.; Ji, L.; Dai, B.; Wang, Z.; Benhelal, E.; Bolan, N.S.; Feron, P.; Yu, H. Progress in recyclable chemicals for sustainable ex-situ CO2 mineralisation. Green Energy Resour. 2024, 2, 100087. [Google Scholar] [CrossRef]
- Schinnerl, F.; Sattler, T.; Noori-Khadjavi, G.; Lehner, M. Direct aqueous mineral carbonation of secondary materials for carbon dioxide storage. J. CO2 Util. 2024, 88, 102942. [Google Scholar] [CrossRef]
- Guo, L.; Peng, X.; Wang, Q.; Zhao, Y.; Xu, L.; Wu, S. Research progress on carbon dioxide mineralization sequestration technology by tailings. Green Smart Min. Eng. 2024, 1, 307–321. [Google Scholar] [CrossRef]
- Ostovari, H.; Sternberg, A.; Bardow, A. Rock ‘n’ use of CO2: Carbon footprint of carbon capture and utilization by mineralization. Sustain. Energy Fuels 2020, 4, 4482–4496. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Y.; Yue, H.; Liu, C.; Zhong, S.; Ma, K.; Liao, W.; Tang, S.; Liang, B. Integrated Process of Monoethanolamine-Based CO2 Absorption and CO2 Mineralization with SFGD Slag: Process Simulation and Life-Cycle Assessment of CO2 Emission. ACS Sustain. Chem. Eng. 2021, 9, 8238–8248. [Google Scholar] [CrossRef]
- Ncongwane, M.S.; Broadhurst, J.L.; Petersen, J. Assessment of the potential carbon footprint of engineered processes for the mineral carbonation of PGM tailings. Int. J. Greenh. Gas Control 2018, 77, 70–81. [Google Scholar] [CrossRef]
- Di Maria, A.; Snellings, R.; Alaerts, L.; Quaghebeur, M.; Van Acker, K. Environmental assessment of CO2 mineralisation for sustainable construction materials. Int. J. Greenh. Gas Control 2020, 93, 102882. [Google Scholar] [CrossRef]
- Zevenhoven, R. Metals Production, CO2 Mineralization and LCA. Metals 2020, 10, 342. [Google Scholar] [CrossRef]
- Huan, Q.; Wibowo, H.; Yan, M.; Song, M. A review of CO2 mineral storage: Current processes, typical applications, and life cycle assessment. J. Environ. Chem. Eng. 2024, 12, 114785. [Google Scholar] [CrossRef]
- Bukar, A.M.; Asif, M. Technology readiness level assessment of carbon capture and storage technologies. Renew. Sustain. Energy Rev. 2024, 200, 114578. [Google Scholar] [CrossRef]
- Matter, J.M.; Broecker, W.S.; Gislason, S.R.; Gunnlaugsson, E.; Oelkers, E.H.; Stute, M.; Sigurdardóttir, H.; Stefansson, A.; Alfreðsson, H.A.; Aradóttir, E.S.; et al. The CarbFix Pilot Project–Storing carbon dioxide in basalt. Energy Procedia 2011, 4, 5579–5585. [Google Scholar] [CrossRef]
- Snæbjörnsdóttir, S.Ó.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef]
- The National Academies of Sciences·Engineering·Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; The National Academies Press: Washington, DC, USA, 2019; p. 510. [Google Scholar]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 9. [Google Scholar] [CrossRef]
- Milani, D.; McDonald, R.; Fawell, P.; Weldekidan, H.; Puxty, G.; Feron, P. Ex-situ mineral carbonation process challenges and technology enablers: A review from Australia’s perspective. Miner. Eng. 2025, 222, 109124. [Google Scholar] [CrossRef]
- Wang, X.; Maroto-Valer, M.M. Integration of CO2 Capture and Mineral Carbonation by Using Recyclable Ammonium Salts. ChemSusChem 2011, 4, 1291–1300. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, F.; Song, Q.; Deng, Y.; Ye, W.; Ni, J.; Si, X.; Wang, C. A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application. Materials 2024, 17, 2066. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Yaqoob, Z.; Mujtaba, M.A.; Fayaz, H.; Saleel, C.A. Developments in mineral carbonation for Carbon sequestration. Heliyon 2023, 9, e21796. [Google Scholar] [CrossRef]
- Kumari, P.; Yahmadi, R.; Mumtaz, F.; Vega, L.F.; Ceriani, A.; Tribuzio, R.; Dumée, L.F.; Decarlis, A. CO2 capture via subsurface mineralization geological settings and engineering perspectives towards long-term storage and decarbonization in the Middle East. Carbon Capture Sci. Technol. 2024, 13, 100293. [Google Scholar] [CrossRef]
- Kandji, E.H.B.; Plante, B.; Bussière, B.; Beaudoin, G.; Dupont, P.-P. Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailings: Case study of the Dumont Nickel Project, Amos, Québec. Appl. Geochem. 2017, 84, 262–276. [Google Scholar] [CrossRef]
- Power, I.M.; Paulo, C.; Long, H.; Lockhart, J.A.; Stubbs, A.R.; French, D.; Caldwell, R. Carbonation, Cementation, and Stabilization of Ultramafic Mine Tailings. Environ. Sci. Technol. 2021, 55, 10056–10066. [Google Scholar] [CrossRef]
- Vogeli, J.; Reid, D.L.; Becker, M.; Broadhurst, J.; Franzidis, J.P. Investigation of the potential for mineral carbonation of PGM tailings in South Africa. Miner. Eng. 2011, 24, 1348–1356. [Google Scholar] [CrossRef]
- Ding, W.; Fu, L.; Ouyang, J.; Yang, H. CO2 mineral sequestration by wollastonite carbonation. Phys. Chem. Miner. 2014, 41, 489–496. [Google Scholar] [CrossRef]
- Liu, W.; Teng, L.; Rohani, S.; Qin, Z.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.; Liang, B. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Capelo-Avilés, S.; Tomazini de Oliveira, R.; Gallo Stampino, I.I.; Gispert-Guirado, F.; Casals-Terré, A.; Giancola, S.; Galán-Mascarós, J.R. A thorough assessment of mineral carbonation of steel slag and refractory waste. J. CO2 Util. 2024, 82, 102770. [Google Scholar] [CrossRef]
- Ostovari, H.; Müller, L.; Skocek, J.; Bardow, A. From Unavoidable CO2 Source to CO2 Sink? A Cement Industry Based on CO2 Mineralization. Environ. Sci. Technol. 2021, 55, 5212–5223. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Chen, Y.-H.; Fan, L.-S.; Kim, H.; Gao, X.; Ling, T.-C.; Chiang, P.-C.; Pei, S.-L.; Gu, G. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat. Sustain. 2020, 3, 399–405. [Google Scholar] [CrossRef]
- Chu, G.; Li, C.; Liu, W.; Zhang, G.; Yue, H.; Liang, B.; Wang, Y.; Luo, D. Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process. Energy 2019, 166, 1314–1322. [Google Scholar] [CrossRef]
- Crouzet, C.; Brunet, F.; Montes-Hernandez, G.; Recham, N.; Findling, N.; Ferrasse, J.-H.; Goffé, B. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration. Front. Energy Res. 2017, 5, 29. [Google Scholar] [CrossRef]
- Hu, G.; Rohani, S.; Jiang, X.; Li, J.; Liu, Q.; Liu, W. CO2 Mineral Sequestration and Faujasite Zeolite Synthesis by Using Blast Furnace Slag: Process Optimization and CO2 Net-Emission Reduction Evaluation. ACS Sustain. Chem. Eng. 2021, 9, 13963–13971. [Google Scholar] [CrossRef]
- Chen, T.-L.; Shu, B.-K.; Chen, Y.-H.; Chiang, P.-C. Simultaneously comparing various CO2-mineralized steelmaking slags as supplementary cementitious materials via high gravity carbonation. J. CO2 Util. 2024, 90, 102985. [Google Scholar] [CrossRef]
- Miao, E.; Du, Y.; Zheng, X.; Zhang, X.; Xiong, Z.; Zhao, Y.; Zhang, J. Kinetic analysis on CO2 sequestration from flue gas through direct aqueous mineral carbonation of circulating fluidized bed combustion fly ash. Fuel 2023, 342, 127851. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, X.; Cheng, T.; Shen, Y.; Cai, W.-J.; Arthur Chen, C.-T.; Yang, Z.; Liu, T.; Xiao, J.; Xia, M.; et al. Unlocking high carbonation efficiency: Direct CO2 mineralization with fly ash and seawater. Chem. Eng. Sci. 2023, 282, 119349. [Google Scholar] [CrossRef]
- Miao, E.; Du, Y.; Zheng, X.; Zhang, X.; Xiong, Z.; Zhao, Y.; Zhang, J. CO2 sequestration by direct mineral carbonation of municipal solid waste incinerator fly ash in ammonium salt solution: Performance evaluation and reaction kinetics. Sep. Purif. Technol. 2023, 309, 123103. [Google Scholar] [CrossRef]
- Ćwik, A.; Casanova, I.; Rausis, K.; Zarębska, K. Utilization of high-calcium fly ashes through mineral carbonation: The cases for Greece, Poland and Spain. J. CO2 Util. 2019, 32, 155–162. [Google Scholar] [CrossRef]
- Hosseini, T.; Haque, N.; Selomulya, C.; Zhang, L. Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride—Process simulation and techno-economic analysis. Appl. Energy 2016, 175, 54–68. [Google Scholar] [CrossRef]
- Jin, F.; Zhao, M.; Xu, M.; Mo, L. Maximising the benefits of calcium carbonate in sustainable cements: Opportunities and challenges associated with alkaline waste carbonation. npj Mater. Sustain. 2024, 2, 1. [Google Scholar] [CrossRef]
- Medas, D.; Cappai, G.; De Giudici, G.; Piredda, M.; Podda, S. Accelerated carbonation by cement kiln dust in aqueous slurries: Chemical and mineralogical investigation. Greenh. Gases Sci. Technol. 2017, 7, 692–705. [Google Scholar] [CrossRef]
- Ye, J.; Fang, J.; Sun, Y.; Shi, X.; Chen, G.; Ma, T.; Zhi, X. CO2 mineralization of cement-based materials by accelerated CO2 mineralization and its mineralization degree: A review. Constr. Build. Mater. 2024, 444, 137712. [Google Scholar] [CrossRef]
- Andersson, R.; Stripple, H.; Gustafsson, T.; Ljungkrantz, C. Carbonation as a method to improve climate performance for cement based material. Cem. Concr. Res. 2019, 124, 105819. [Google Scholar] [CrossRef]
- Córdoba, P.; Rojas, S. Carbon sequestration through mineral carbonation: Using commercial FGD-gypsum from a copper smelter for sustainable waste management and environmental impact mitigation. J. Environ. Chem. Eng. 2024, 12, 112510. [Google Scholar] [CrossRef]
- Rahmani, O. An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration. J. CO2 Util. 2020, 35, 265–271. [Google Scholar] [CrossRef]
- Rahmani, O. CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum. J. CO2 Util. 2018, 27, 374–380. [Google Scholar] [CrossRef]
- Wilson, S.; Harrison, A.L.; Dipple, G.M.; Power, I.M.; Barker, S.L.L.; Ulrich Mayer, K.; Fallon, S.J.; Raudsepp, M.; Southam, G. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas Control 2014, 25, 121–140. [Google Scholar] [CrossRef]
- Krevor, S.C.M.; Lackner, K.S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int. J. Greenh. Gas Control 2011, 5, 1073–1080. [Google Scholar] [CrossRef]
- Li, H.; Bian, Y.; Liu, M.; Lin, J.; Dai, M.; Xie, H.; Yu, H.; Chen, B.; Xue, M.; Li, Z.; et al. CO2 mineralization and utilization by tailings sand in China for potential carbon sinks and spatial project layout. Resour. Conserv. Recycl. 2024, 206, 107598. [Google Scholar] [CrossRef]
- Hou, S.; Guo, Y.; Sun, J.; Jiang, J.; Gao, H.; Liu, J. Prospect of gold tailings as a new mineral admixture: Effect on hydration, pore structure and mechanical properties of concrete. Mater. Today Sustain. 2025, 29, 101078. [Google Scholar] [CrossRef]
- Pei, T.; Zheng, Y.; Wang, Y.; Zhang, D.; Zhang, P.; Cui, S.; Zheng, Y.; Zhao, S. Utilization of copper tailings in the preparation of low-calcium Portland cement clinker and carbonation-hardening mechanism. Constr. Build. Mater. 2024, 457, 139362. [Google Scholar] [CrossRef]
- Wang, B.; Chen, S.; Feng, X.; Yuan, Z.; Chen, W.; Liu, W.; He, M.; Liu, Q. CO2 sequestration by indirect mineral carbonation of serpentine with (NH4)2SO4 as a recyclable extractant. Process Saf. Environ. Prot. 2024, 191, 2082–2094. [Google Scholar] [CrossRef]
- Moon, S.; Kim, E.; Noh, S.; Triwigati, P.T.; Choi, S.; Park, Y. Carbon mineralization of steel and iron-making slag: Paving the way for a sustainable and carbon-neutral future. J. Environ. Chem. Eng. 2024, 12, 112448. [Google Scholar] [CrossRef]
- Mälkki, M.; Mäkikouri, S. Extraction of magnesium from mine tailings for carbon dioxide mineralization: A preliminary study of the effect of ammonium sulfate to tailings ratio on products and yield. Hydrometallurgy 2024, 225, 106268. [Google Scholar] [CrossRef]
- Ma, Y.; Yi, S.; Wang, M. Biomimetic mineralization for carbon capture and sequestration. Carbon Capture Sci. Technol. 2024, 13, 100257. [Google Scholar] [CrossRef]
- Izumi, Y.; Iizuka, A.; Ho, H.-J. Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry. J. Clean. Prod. 2021, 312, 127618. [Google Scholar] [CrossRef]
- Qin, C.; Jiang, Y.; Zhou, J.; Zuo, S.; Chen, S.; Liu, Z.; Yin, H.; Li, Y. Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery. Energy 2022, 242, 122551. [Google Scholar] [CrossRef]
- Romanov, V.; Soong, Y.; Carney, C.; Rush, G.E.; Nielsen, B.; O’Connor, W. Mineralization of Carbon Dioxide: A Literature Review. ChemBioEng Rev. 2015, 2, 231–256. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, X.; Wei, Y.; He, Q.; Yan, S.; Ji, L. Protonated amines mediated CO2 mineralization of coal fly ash and polymorph selection of CaCO3. Chem. Eng. J. 2022, 450, 138121. [Google Scholar] [CrossRef]
- Wang, S.; Kim, J.; Qin, T. Mineral carbonation of iron and steel by-products: State-of-the-art techniques and economic, environmental, and health implications. J. CO2 Util. 2024, 81, 102707. [Google Scholar] [CrossRef]
- Zhao, Y.; Itakura, K.-i. A State-of-the-Art Review on Technology for Carbon Utilization and Storage. Energies 2023, 16, 3992. [Google Scholar] [CrossRef]
- Rackley, S.A. (Ed.) 10—Mineral carbonation. In Carbon Capture and Storage, 2nd ed.; Butterworth-Heinemann: Boston, MA, USA, 2017; pp. 253–282. [Google Scholar]
- Ambarita, M.; Pusparizkita, Y.M.; Schmahl, W.W.; Reswara, G.; Putra, M.M.; Pratama Lamura, M.D.; Jamari, J.; Bayuseno, A.P. Using selective HCl and H2SO4 acids to extract calcium from extracted asphalt waste residues in preparation for subsequent indirect mineral carbonation. Case Stud. Chem. Environ. Eng. 2024, 10, 100998. [Google Scholar] [CrossRef]
- Walker, I.; Bell, R.; Rippy, K. Mineralization of alkaline waste for CCUS. npj Mater. Sustain. 2024, 2, 28. [Google Scholar] [CrossRef]
- Giannoulakis, S.; Volkart, K.; Bauer, C. Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation. Int. J. Greenh. Gas Control 2014, 21, 140–157. [Google Scholar] [CrossRef]
- Lu, X.; Carroll, K.J.; Turvey, C.C.; Dipple, G.M. Rate and capacity of cation release from ultramafic mine tailings for carbon capture and storage. Appl. Geochem. 2022, 140, 105285. [Google Scholar] [CrossRef]
- Ofori, K.A.; Hanson, W.; Huang, K.; Pan, L. Sulfate-activated mineral carbonation of olivine minerals with mechanisms explained by shrinking core models and by machine learning algorithm. Miner. Eng. 2024, 219, 109058. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, R.; Bian, X. A review of CO2 sequestration projects and application in China. Sci. World J. 2014, 2014, 381854. [Google Scholar] [CrossRef]
- Molahid, V.L.M.; Mohd Kusin, F.; Syed Hasan, S.N.; Ramli, N.A.; Abdullah, A.M. CO2 Sequestration through Mineral Carbonation: Effect of Different Parameters on Carbonation of Fe-Rich Mine Waste Materials. Processes 2022, 10, 432. [Google Scholar] [CrossRef]
- Woodall, C.M.; McQueen, N.; Pilorgé, H.; Wilcox, J. Utilization of mineral carbonation products: Current state and potential. Greenh. Gases Sci. Technol. 2019, 9, 1096–1113. [Google Scholar] [CrossRef]
- Woodall, C.M.; Lu, X.; Dipple, G.; Wilcox, J. Carbon Mineralization with North American PGM Mine Tailings—Characterization and Reactivity Analysis. Minerals 2021, 11, 844. [Google Scholar] [CrossRef]
- Jo, H.; Lee, M.-G.; Park, J.; Jung, K.-D. Preparation of high-purity nano-CaCO3 from steel slag. Energy 2017, 120, 884–894. [Google Scholar] [CrossRef]
- Daval, D.; Hellmann, R.; Martinez, I.; Gangloff, S.; Guyot, F. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chem. Geol. 2013, 351, 245–256. [Google Scholar] [CrossRef]
- Stokreef, S.; Sadri, F.; Stokreef, A.; Ghahreman, A. Mineral carbonation of ultramafic tailings: A review of reaction mechanisms and kinetics, industry case studies, and modelling. Clean. Eng. Technol. 2022, 8, 100491. [Google Scholar] [CrossRef]
- Biava, G.; Zacco, A.; Zanoletti, A.; Sorrentino, G.P.; Capone, C.; Princigallo, A.; Depero, L.E.; Bontempi, E. Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo–Brescia Area. Materials 2023, 16, 4055. [Google Scholar] [CrossRef] [PubMed]
- Kemache, N.; Pasquier, L.-C.; Cecchi, E.; Mouedhen, I.; Blais, J.-F.; Mercier, G. Aqueous mineral carbonation for CO2 sequestration: From laboratory to pilot scale. Fuel Process. Technol. 2017, 166, 209–216. [Google Scholar] [CrossRef]
- Azdarpour, A.; Afkhami Karaei, M.; Hamidi, H.; Mohammadian, E.; Honarvar, B. CO2 sequestration through direct aqueous mineral carbonation of red gypsum. Petroleum 2018, 4, 398–407. [Google Scholar] [CrossRef]
- Pasquier, L.-C.; Mercier, G.; Blais, J.-F.; Cecchi, E.; Kentish, S. Parameters optimization for direct flue gas CO2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residue. Appl. Geochem. 2014, 50, 66–73. [Google Scholar] [CrossRef]
- Pasquier, L.-C.; Mercier, G.; Blais, J.-F.; Cecchi, E.; Kentish, S. Reaction Mechanism for the Aqueous-Phase Mineral Carbonation of Heat-Activated Serpentine at Low Temperatures and Pressures in Flue Gas Conditions. Environ. Sci. Technol. 2014, 48, 5163–5170. [Google Scholar] [CrossRef]
- Sousa, V.; Nogueira, R.; Meireles, I.; Silva, A. Managing carbon waste in a decarbonized industry: Assessing the potential of concrete mixing storage. Environ. Sci. Pollut. Res. Int. 2024, 31, 17804–17821. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Liu, M.; Fu, Y.; Si, Z.; Zhang, X.; Zhong, Q. The characterization and mechanism of carbonated steel slag and its products under low CO2 pressure. Mater. Today Commun. 2023, 35, 105827. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, H.; Li, S.; Sun, Y.; Ba, H.; Ma, J. Study on carbonation behavior and carbon footprint of steel slag-calcium carbide slag-desulfurization gypsum composite system. Sci. Rep. 2025, 15, 15199. [Google Scholar] [CrossRef] [PubMed]
- Moon, E.-J.; Choi, Y.C. Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation. J. Clean. Prod. 2018, 180, 642–654. [Google Scholar] [CrossRef]
- Triwigati, P.T.; Noh, S.; Sim, G.; Lee, J.; Kim, E.; Moon, S.; Park, Y. Investigation of pH swing carbon mineralization for valuable element recovery and CO2 sequestration using steelmaking slag. J. Ind. Eng. Chem. 2025, 147, 658–667. [Google Scholar] [CrossRef]
- Ravi, M.; Rathore, S.K.; Sivalingam, M. Performance evaluation of CO2 capture on using potential adsorbents in a CI engine exhaust–An experimental investigation. Greenh. Gases Sci. Technol. 2024, 14, 138–151. [Google Scholar] [CrossRef]
- Zhang, N.; Moment, A. Upcycling Construction and Demolition Waste into Calcium Carbonates: Characterization of Leaching Kinetics and Carbon Mineralization Conditions. ACS Sustain. Chem. Eng. 2023, 11, 866–879. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, H.D.; Yang, R.; Zheng, A.; Moment, A. Aqueous metal ion leaching processes from high sulfur coal fly ash for carbon mineralization: The importance of pH control on cation extraction, carbonate purity, and silicon Q structure. Chem. Eng. J. 2023, 474, 145968. [Google Scholar] [CrossRef]
- Highfield, J.; Lim, H.; Fagerlund, J.; Zevenhoven, R. Mechanochemical processing of serpentine with ammonium salts under ambient conditions for CO2 mineralization. RSC Adv. 2012, 2, 6542–6548. [Google Scholar] [CrossRef]
- Lammers, L.N.; Duan, Y.; Anaya, L.; Koishi, A.; Lopez, R.; Delima, R.; Jassby, D.; Sedlak, D.L. Electrolytic Sulfuric Acid Production with Carbon Mineralization for Permanent Carbon Dioxide Removal. ACS Sustain. Chem. Eng. 2023, 11, 4800–4812. [Google Scholar] [CrossRef]
- Hong, S.; Park, A.-H.A.; Park, Y. Evaluation of elemental leaching behavior and morphological changes of steel slag in both acidic and basic conditions for carbon sequestration potential. Korean J. Chem. Eng. 2021, 38, 2279–2285. [Google Scholar] [CrossRef]
- Saran, R.; Arora, V.; Yadav, S. CO2 Sequestration by Mineral Carbonation: A Review. Glob. NEST J. 2018, 20, 497–503. [Google Scholar]
- Luo, Y.; He, D. Indirect Carbonation by a Two-Step Leaching Process Using Ammonium Chloride and Acetic Acid. JOM 2022, 74, 1958–1968. [Google Scholar] [CrossRef]
- Williams, J.M.; Zhang, N.; Moment, A.J. Assessment of Ammoniacal Leaching Agents for Metal Cation Extraction from Construction Wastes in Mineral Carbonation. ACS Omega 2024, 9, 29776–29788. [Google Scholar] [CrossRef] [PubMed]
- Dri, M.; Sanna, A.; Maroto-Valer, M.M. Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process. Technol. 2013, 113, 114–122. [Google Scholar] [CrossRef]
- Wang, X.; Maroto-Valer, M. Integration of CO2 capture and storage based on pH-swing mineral carbonation using recyclable ammonium salts. Energy Procedia 2011, 4, 4930–4936. [Google Scholar] [CrossRef]
- Mun, M.; Cho, H.; Kwon, J.; Kim, K.; Kim, R. Investigation of the CO2 Sequestration by Indirect Aqueous Carbonation of Waste Cement. Am. J. Clim. Change 2017, 6, 132–150. [Google Scholar] [CrossRef]
- Sanna, A.; Dri, M.; Maroto-Valer, M. Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source. Fuel 2013, 114, 153–161. [Google Scholar] [CrossRef]
- Kohitlhetse, I.C.; Manono, M.S.; Motsetse, C.K.; Mendonidis, P.M. A Step towards CO2 Sequestration through Mineral Carbonation: Using Ammonium-Based Lixiviants for the Dissolution of Calcium from Iron-Making Blast Furnace Slag. Minerals 2024, 14, 695. [Google Scholar] [CrossRef]
- He, L.; Yu, D.; Lv, W.; Wu, J.; Xu, M. A Novel Method for CO2 Sequestration via Indirect Carbonation of Coal Fly Ash. Ind. Eng. Chem. Res. 2013, 52, 15138–15145. [Google Scholar] [CrossRef]
- Stasiulaitiene, I.; Vajegaite, V.; Martuzevicius, D.; Denafas, G.; Sliaupa, S.; Fagerlund, J.; Zevenhoven, R. Parameters affecting Mg(OH)2 extraction from serpentinites in lithuania for the purpose of CO2 reduction by mineral carbonation. Environ. Prog. Sustain. Energy 2014, 33, 512–518. [Google Scholar] [CrossRef]
- Arce Ferrufino, G.L.A.; Okamoto, S.; Dos Santos, J.C.; de Carvalho, J.A.; Avila, I.; Romero Luna, C.M.; Gomes Soares Neto, T. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron-rich lizardite 1T. J. CO2 Util. 2018, 24, 164–173. [Google Scholar] [CrossRef]
- Tong, Z.; Ma, G.; Zhou, D.; Yang, G.; Peng, C. The Indirect Mineral Carbonation of Electric Arc Furnace Slag Under Microwave Irradiation. Sci. Rep. 2019, 9, 7676. [Google Scholar] [CrossRef] [PubMed]
- Heřmanská, M.; Voigt, M.J.; Marieni, C.; Declercq, J.; Oelkers, E.H. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chem. Geol. 2023, 636, 121632. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Hisseine, O.A.; Awolayo, A.N. Carbon dioxide sequestration through steel slag carbonation: Review of mechanisms, process parameters, and cleaner upcycling pathways. J. CO2 Util. 2024, 81, 102736. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Na, Y.; Song, Y.; Wang, J. A review of carbon mineralization mechanism during geological CO2 storage. Heliyon 2023, 9, e23135. [Google Scholar] [CrossRef]
- Ren, E.; Tang, S.; Liu, C.; Yue, H.; Li, C.; Liang, B. Carbon dioxide mineralization for the disposition of blast-furnace slag: Reaction intensification using NaCl solutions. Greenh. Gases Sci. Technol. 2020, 10, 436–448. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Giri, B.S.; Thivaharan, V.; Srivastava, A.K.; Kumar, S.; Singh, R.P.; Kumar, R.; Singh, R.S. Sequestration of simulated carbon dioxide (CO(2)) using churning cementations waste and fly-ash in a thermo-stable batch reactor (TSBR). Environ. Sci. Pollut. Res. 2020, 27, 27470–27479. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Zhang, M. Mg2+ leaching and CO2 sequestration of magnesium tailings enhanced by external field coupled with pretreatment. J. Environ. Chem. Eng. 2024, 12, 113613. [Google Scholar] [CrossRef]
- Nduagu, E.; Romão, I.; Fagerlund, J.; Zevenhoven, R. Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration. Appl. Energy 2013, 106, 116–126. [Google Scholar] [CrossRef]
- Rushendra Revathy, T.D.; Palanivelu, K.; Ramachandran, A. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ. Sci. Pollut. Res. 2016, 23, 7349–7359. [Google Scholar] [CrossRef]
- Matus, C.F.; Stopić, S.R.; Friedrich, B.G. Carbonation of minerals and slags under high pressure in an autoclave. Vojnoteh. Glas. /Mil. Tech. Cour. 2021, 69, 486–498. [Google Scholar] [CrossRef]
- Gomes, K.V.; Woodall, C.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. Techno-economic analysis of indirect carbonation processes for carbon sequestration using mining waste. Energy Adv. 2025, 4, 435–446. [Google Scholar] [CrossRef]
- Gerdemann, S.; Dahlin, D.; Oconnor, W.; Penner, L.; Rush, G.E. Ex-Situ and In-Situ Mineral Carbonation as a Means to Sequester Carbon Dioxide; U.S. Department of Energy: Washington, DC, USA, 2004. [Google Scholar]
- Puthiya Veetil, S.; Hitch, M. Recent developments and challenges of aqueous mineral carbonation: A review. Int. J. Environ. Sci. Technol. 2020, 17, 4359–4380. [Google Scholar] [CrossRef]
- Zhang, D.; Ghouleh, Z.; Shao, Y. Review on carbonation curing of cement-based materials. J. CO2 Util. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- Ho, H.-J.; Iizuka, A.; Shibata, E. Chemical recycling and use of various types of concrete waste: A review. J. Clean. Prod. 2021, 284, 124785. [Google Scholar] [CrossRef]
- Bhardwaj, R.; van Ommen, J.R.; Nugteren, H.W.; Geerlings, H. Accelerating Natural CO2 Mineralization in a Fluidized Bed. Ind. Eng. Chem. Res. 2016, 55, 2946–2951. [Google Scholar] [CrossRef]
- Chang, E.E.; Chen, C.H.; Chen, Y.H.; Pan, S.Y.; Chiang, P.C. Performance evaluation for carbonation of steel-making slags in a slurry reactor. J.Hazard. Mater. 2011, 186, 558–564. [Google Scholar] [CrossRef]
- Chang, E.E.; Pan, S.-Y.; Chen, Y.-H.; Tan, C.-S.; Chiang, P.-C. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed. J. Hazard. Mater. 2012, 227–228, 97–106. [Google Scholar] [CrossRef]
- Santos, R.M.; Knops, P.C.M.; Rijnsburger, K.L.; Chiang, Y.W. CO2 Energy Reactor—Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization. Front. Energy Res. 2016, 4, 5. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Xuan, T.; Zhang, X.; Wang, L.; Tian, Y.; Zhu, J. Simulation design and optimization of reactors for carbon dioxide mineralization. Energy Storage Sav. 2024, 3, 209–217. [Google Scholar] [CrossRef]
- Santos, R.M.; Verbeeck, W.; Knops, P.; Rijnsburger, K.; Pontikes, Y.; Van Gerven, T. Integrated Mineral Carbonation Reactor Technology for Sustainable Carbon Dioxide Sequestration: ‘CO2 Energy Reactor’. Energy Procedia 2013, 37, 5884–5891. [Google Scholar] [CrossRef]
- Biava, G.; Depero, L.E.; Bontempi, E. Accelerated Carbonation of Steel Slag and Their Valorisation in Cement Products: A Review. Span. J. Soil Sci. 2024, 14, 12908. [Google Scholar] [CrossRef]
- Cao, R.; Miller, Q.R.S.; Davidson, C.L.; Gallin, W.; Reidel, S.P.; Jiao, Z.; McLaughlin, J.F.; Nienhuis, E.T.; Schaef, H.T. Gigaton commercial-scale carbon storage and mineralization potential in stacked Columbia River basalt reservoirs. Int. J. Greenh. Gas Control 2024, 137, 104206. [Google Scholar] [CrossRef]
- Li, G.; Yang, J.; Li, H.; Liew, J.; Huang, J. Enhancing sustainable utilization of iron-based alkaline solid wastes for carbon mineralization: Insights into CO2 transport and adsorption dynamics. Dev. Built Environ. 2025, 21, 100595. [Google Scholar] [CrossRef]
- Winnefeld, F.; Leemann, A.; German, A.; Lothenbach, B. CO2 storage in cement and concrete by mineral carbonation. Curr. Opin. Green Sustain. Chem. 2022, 38, 100672. [Google Scholar] [CrossRef]
- Said, A.; Laukkanen, T.; Järvinen, M. Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag. Appl. Energy 2016, 177, 602–611. [Google Scholar] [CrossRef]
- Leventaki, E.; Couto Queiroz, E.; Krishnan Pisharody, S.; Kumar Siva Kumar, A.; Hoang Ho, P.; Andersson-Sarning, M.; Haase, B.; Baena-Moreno, F.M.; Cuin, A.; Bernin, D. Aqueous mineral carbonation of three different industrial steel slags: Absorption capacities and product characterization. Environ. Res. 2024, 252, 118903. [Google Scholar] [CrossRef] [PubMed]
- Baras, A.; Li, J.; Ni, W.; Hussain, Z.; Hitch, M. Evaluation of Potential Factors Affecting Steel Slag Carbonation. Processes 2023, 11, 2590. [Google Scholar] [CrossRef]
- Myers, C.A.; Nakagaki, T.; Akutsu, K. Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas. Int. J. Greenh. Gas Control 2019, 87, 100–111. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Li, X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 2017, 97, 15–22. [Google Scholar] [CrossRef]
- Elyasi Gomari, K.; Rezaei Gomari, S.; Hughes, D.; Ahmed, T. Exploring the potential of steel slag waste for carbon sequestration through mineral carbonation: A comparative study of blast-furnace slag and ladle slag. J. Environ. Manag. 2024, 351, 119835. [Google Scholar] [CrossRef] [PubMed]
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates. J. Clean. Prod. 2016, 129, 437–448. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, Z.; Hou, P.; Du, P.; Zhang, L.; Xu, H. Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete. Constr. Build. Mater. 2016, 107, 191–202. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P.; Yang, J.; Zhang, B. Influence of steel slag on mechanical properties and durability of concrete. Constr. Build. Mater. 2013, 47, 1414–1420. [Google Scholar] [CrossRef]
- Menad, N.E.; Kana, N.; Seron, A.; Kanari, N. New EAF Slag Characterization Methodology for Strategic Metal Recovery. Materials 2021, 14, 1513. [Google Scholar] [CrossRef]
- Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Mertens, G.; Veulemans, W.; Geysen, D.; Jones, P.T.; Vandewalle, L.; Van Balen, K.; Blanpain, B. Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 2012, 42, 778–788. [Google Scholar] [CrossRef]
- Yu, J.; Wang, K. Study on Characteristics of Steel Slag for CO2 Capture. Energy Fuels 2011, 25, 5483–5492. [Google Scholar] [CrossRef]
- You, K.-s.; Lee, S.-H.; Hwang, S.-H.; Kim, H.-s.; Ahn, J.-W. CO2 Sequestration via a Surface-Modified Ground Granulated Blast Furnace Slag Using NaOH Solution. Mater. Trans. 2011, 52, 1972–1976. [Google Scholar] [CrossRef]
- Ghacham, A.B.; Pasquier, L.-C.; Cecchi, E.; Blais, J.-F.; Mercier, G. CO2 sequestration by mineral carbonation of steel slags under ambient temperature: Parameters influence, and optimization. Environ. Sci. Pollut. Res. 2016, 23, 17635–17646. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Di Gianfilippo, M.; Polettini, A.; Pomi, R.; Stramazzo, A. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. J. Hazard. Mater. 2015, 283, 302–313. [Google Scholar] [CrossRef]
- Omale, S.O.; Choong, T.S.Y.; Abdullah, L.C.; Siajam, S.I.; Yip, M.W. Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon 2019, 5, e02602. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Mehra, A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag. Waste Manag. 2017, 64, 348–357. [Google Scholar] [CrossRef]
- Su, T.-H.; Yang, H.-J.; Shau, Y.-H.; Takazawa, E.; Lee, Y.-C. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V–Cr concerns. J. Environ. Sci. 2016, 41, 99–111. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Chiang, P.-C.; Chen, Y.-H.; Tan, C.-S.; Chang, E.E. Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed. Environ. Sci. Technol. 2013, 47, 3308–3315. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-Y.; Chiang, P.-C.; Chen, Y.-H.; Chen, C.-D.; Lin, H.-Y.; Chang, E.E. Systematic Approach to Determination of Maximum Achievable Capture Capacity via Leaching and Carbonation Processes for Alkaline Steelmaking Wastes in a Rotating Packed Bed. Environ. Sci. Technol. 2013, 47, 13677–13685. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.E.; Chiu, A.-C.; Pan, S.-Y.; Chen, Y.-H.; Tan, C.-S.; Chiang, P.-C. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor. Int. J. Greenh. Gas Control 2013, 12, 382–389. [Google Scholar] [CrossRef]
- Li, H.; Tang, Z.; Li, N.; Cui, L.; Mao, X.-z. Mechanism and process study on steel slag enhancement for CO2 capture by seawater. Appl. Energy 2020, 276, 115515. [Google Scholar] [CrossRef]
- Zhang, S.; Ghouleh, Z.; Mucci, A.; Bahn, O.; Provençal, R.; Shao, Y. Production of cleaner high-strength cementing material using steel slag under elevated-temperature carbonation. J. Clean. Prod. 2022, 342, 130948. [Google Scholar] [CrossRef]
- Tian, S.; Jiang, J.; Chen, X.; Yan, F.; Li, K. Direct Gas–Solid Carbonation Kinetics of Steel Slag and the Contribution to In situ Sequestration of Flue Gas CO2 in Steel-Making Plants. ChemSusChem 2013, 6, 2348–2355. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, L.; Sauve’, S.; Hausler, R.; Niquette, P.; Mimeault, M.; Kharoune, M. CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature. Ind. Eng. Chem. Res. 2008, 47, 7610–7616. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-W.; Chae, S.; Bang, J.-H.; Lee, S.-W. CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. J. CO2 Util. 2016, 16, 336–345. [Google Scholar] [CrossRef]
- Mun, M.; Cho, H. Mineral Carbonation for Carbon Sequestration with Industrial Waste. Energy Procedia 2013, 37, 6999–7005. [Google Scholar] [CrossRef]
- Bang, J.-H.; Lee, S.-W.; Jeon, C.; Park, S.; Song, K.; Jo, W.J.; Chae, S. Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO2 Mineralization. Energies 2016, 9, 996. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, W.; Hu, J.; Wang, L.; Gao, J.; Liang, B.; Yue, H.; Zhang, G.; Luo, D.; Li, C. Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J. Clean. Prod. 2018, 197, 242–252. [Google Scholar] [CrossRef]
- Kodama, S.; Nishimoto, T.; Yamamoto, N.; Yogo, K.; Yamada, K. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 2008, 33, 776–784. [Google Scholar] [CrossRef]
- Eloneva, S.; Said, A.; Fogelholm, C.-J.; Zevenhoven, R. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl. Energy 2012, 90, 329–334. [Google Scholar] [CrossRef]
- Owais, M.; Järvinen, M.; Taskinen, P.; Said, A. Experimental study on the extraction of calcium, magnesium, vanadium and silicon from steelmaking slags for improved mineral carbonation of CO2. J. CO2 Util. 2019, 31, 1–7. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, M.-S.; Zhang, J.-P.; Yang, G. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem. Eng. J. 2011, 173, 437–445. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, C.; Huang, P.; Zhang, Y.; Sun, J. Modeling and response surface methodology optimization of reaction parameters for aqueous mineral carbonation by steel slag. Carbon Capture Sci. Technol. 2024, 12, 100229. [Google Scholar] [CrossRef]
- Lee, Y.H.; Eom, H.; Lee, S.M.; Kim, S.S. Effects of pH and metal composition on selective extraction of calcium from steel slag for Ca(OH)2 production. RSC Adv. 2021, 11, 8306–8313. [Google Scholar] [CrossRef]
- Ragipani, R.; Bhattacharya, S.; Akkihebbal, S.K. Understanding dissolution characteristics of steel slag for resource recovery. Waste Manag. 2020, 117, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Eloneva, S.; Teir, S.; Revitzer, H.; Salminen, J.; Said, A.; Fogelholm, C.-J.; Zevenhoven, R. Reduction of CO2 Emissions from Steel Plants by Using Steelmaking Slags for Production of Marketable Calcium Carbonate. Steel Res. Int. 2009, 80, 415–421. [Google Scholar] [CrossRef]
- Ho, H.-J.; Izumi, Y.; Iizuka, A. A CO2 removal technology based on mineral carbonation and the stability of product carbon storage in a cement matrix. Environ. Technol. Innov. 2024, 34, 103623. [Google Scholar] [CrossRef]
- Wu, S.; Shao, Z.; Andrew, R.M.; Bing, L.; Wang, J.; Niu, L.; Liu, Z.; Xi, F. Global CO2 uptake by cement materials accounts 1930–2023. Sci. Data 2024, 11, 1409. [Google Scholar] [CrossRef]
- Strunge, T.; Renforth, P.; Van der Spek, M. Towards a business case for CO2 mineralisation in the cement industry. Commun. Earth Environ. 2022, 3, 59. [Google Scholar] [CrossRef]
- Pedraza, J.; Zimmermann, A.; Tobon, J.; Schomäcker, R.; Rojas, N. On the road to net zero-emission cement: Integrated assessment of mineral carbonation of cement kiln dust. Chem. Eng. J. 2021, 408, 127346. [Google Scholar] [CrossRef]
- Skocek, J.; Zajac, M.; Ben Haha, M. Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete. Sci. Rep. 2020, 10, 5614. [Google Scholar] [CrossRef]
- Al-Bakri, A.Y.; Ahmed, H.M.; Hefni, M.A. Cement Kiln Dust (CKD): Potential Beneficial Applications and Eco-Sustainable Solutions. Sustainability 2022, 14, 7022. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yang, H.; Lee, S.M.; Kim, S.S. Surface Properties of Cement Kiln Dust with Water Treatment for Selective Extraction of Calcium and Potassium. ACS Omega 2020, 5, 24351–24355. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Sutter, L.L.; Kawatra, S.K.; Eisele, T.C. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J. Hazard. Mater. 2009, 168, 31–37. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Gunning, P.J.; Hills, C.D.; Carey, P.J. Accelerated carbonation treatment of industrial wastes. Waste Manag. 2010, 30, 1081–1090. [Google Scholar] [CrossRef]
- Irfan, M.F.; Hossain, S.M.Z.; Tariq, I.; Khan, N.A.; Tawfeeqi, A.; Goeva, A.; Wael, M. Modeling and Optimization of Aqueous Mineral Carbonation for Cement Kiln Dust Using Response Surface Methodology Integrated with Box-Behnken and Central Composite Design Approaches. Min. Metall. Explor. 2020, 37, 1367–1383. [Google Scholar] [CrossRef]
- Kim, M.-J.; Pak, S.Y.; Kim, D.; Jung, S. Optimum conditions for extracting Ca from CKD to store CO2 through indirect mineral carbonation. KSCE J. Civ. Eng. 2017, 21, 629–635. [Google Scholar] [CrossRef]
- Xuan, D.; Zhan, B.; Poon, C.S.; Zheng, H.; Ka, K.; Kwok, W. Carbon Dioxide Sequestration of Cement Slurry Waste and Valorisation of FRCAs in Eco-Construction Products by Carbonation. In Proceedings of the 14th International Congress on the Chemistry of Cement (ICCC 2015), Beijing, China, 13–16 October 2015. [Google Scholar]
- Zajac, M.; Skocek, J.; Skibsted, J.; Ben Haha, M. CO2 mineralization of demolished concrete wastes into a supplementary cementitious material—A new CCU approach for the cement industry. RILEM Tech. Lett. 2021, 6, 53–60. [Google Scholar] [CrossRef]
- Zajac, M.; Skocek, J.; Ben Haha, M.; Deja, J. CO2 Mineralization Methods in Cement and Concrete Industry. Energies 2022, 15, 3597. [Google Scholar] [CrossRef]
- Driver, J.G.; Bernard, E.; Patrizio, P.; Fennell, P.S.; Scrivener, K.; Myers, R.J. Global decarbonization potential of CO2 mineralization in concrete materials. Proc. Natl. Acad. Sci. USA 2024, 121, e2313475121. [Google Scholar] [CrossRef] [PubMed]
- Snokman, S. CarbonCure Ready Mix Technology Case Studies; CarbonCure Technologies: Dartmouth, NS, Canada, December 2016. [Google Scholar]
- Teramura, S.; Isu, N.; Inagaki, K. New Building Material from Waste Concrete by Carbonation. J. Mater. Civ. Eng. 2000, 12, 288–293. [Google Scholar] [CrossRef]
- Iizuka, A.; Fujii, M.; Yamasaki, A.; Yanagisawa, Y. Development of a New CO2 Sequestration Process Utilizing the Carbonation of Waste Cement. Ind. Eng. Chem. Res. 2004, 43, 7880–7887. [Google Scholar] [CrossRef]
- Johnson, D.C. Accelerated carbonation of waste calcium silicate materials. SCI Lect. Pap. Ser. 2000, 108, 1–10. [Google Scholar]
- Short, N.R.; Purnell, P.; Page, C.L. Preliminary investigations into the supercritical carbonation of cement pastes. J. Mater. Sci. 2001, 36, 35–41. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Kawatra, S.K.; Eisele, T.C.; Sutter, L.L. Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation. Environ. Sci. Technol. 2009, 43, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Mawire, G.; McDonald, R.; Austin, P.; Mukherjee, A.; Esteban, L.; Dhami, N.K. Recycling of mine tailings as supplementary cementitious material: Impact of mine tailings’ mineralogy on hydration behaviour and phase assemblage of Ordinary Portland cement blends. Clean. Mater. 2025, 15, 100288. [Google Scholar] [CrossRef]
- Entezari Zarandi, A.; Larachi, F.; Beaudoin, G.; Plante, B.; Sciortino, M. Ambient mineral carbonation of different lithologies of mafic to ultramafic mining wastes/tailings—A comparative study. Int. J. Greenh. Gas Control 2017, 63, 392–400. [Google Scholar] [CrossRef]
- Vieira, K.R.M.; Arce, G.L.A.F.; Luna, C.M.R.; Facio, V.O.; Carvalho, J.A.; Neto, T.G.S.; Ávila, I. Understanding the acid dissolution of Serpentinites (Tailings and waste rock) for use in indirect mineral carbonation. S. Afr. J. Chem. Eng. 2022, 40, 154–164. [Google Scholar] [CrossRef]
- Meyer, N.A.; Vögeli, J.U.; Becker, M.; Broadhurst, J.L.; Reid, D.L.; Franzidis, J.P. Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study. Miner. Eng. 2014, 59, 45–51. [Google Scholar] [CrossRef]
- Liu, S.; Gu, H.; Yang, K.; Guo, J.; Wu, K.; Guo, L.; Yang, Z.; Xu, L. Preparation activated tailings by pH swing process: Towards yielding cemented tailings backfill and in-situ CO2 mineralization. Cem. Concr. Compos. 2024, 154, 105767. [Google Scholar] [CrossRef]
- Wang, F.; Dreisinger, D.; Jarvis, M.; Hitchins, T. Kinetic evaluation of mineral carbonation of natural silicate samples. Chem. Eng. J. 2021, 404, 126522. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2024; U.S. Geological Survey: Reston, VA, USA, 2024; p. 212. [Google Scholar]
- Zhang, X.; Chen, J.; Jiang, J.; Li, J.; Tyagi, R.D.; Surampalli, R.Y. The potential utilization of slag generated from iron- and steelmaking industries: A review. Environ. Geochem. Health 2020, 42, 1321–1334. [Google Scholar] [CrossRef]
- Ma, M.; Tam, V.W.; Le, K.N.; Butera, A.; Li, W.; Wang, X. Comparative analysis on international construction and demolition waste management policies and laws for policy makers in China. J. Civ. Eng. Manag. 2023, 29, 107–130. [Google Scholar] [CrossRef]
- CEMBUREAU. Cement, Concrete & the Circular Economy; The European Cement Association: Brussels, Belgium, 2016. [Google Scholar]
- Sarker, S.K.; Haque, N.; Bhuiyan, M.; Bruckard, W.; Pramanik, B.K. Recovery of strategically important critical minerals from mine tailings. J. Environ. Chem. Eng. 2022, 10, 107622. [Google Scholar] [CrossRef]
- Bentham, J. Clean TeQ Accelerates Expansion into Global Mine Tailings Management; Global Mining Review: Farnham, UK, 2023. [Google Scholar]
- Wilson, S.; Dipple, G.M.; Power, I.M.; Thom, J.M.; Anderson, R.G.; Raudsepp, M.; Gabites, J.E.; Southam, G. Carbon Dioxide Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada. Econ. Geol. 2009, 104, 95–112. [Google Scholar] [CrossRef]
- Mining Association of Canada. Towards Sustainable Mining; The Mining Association of Canada: Ottawa, ON, Canada, 2007. [Google Scholar]
- Fikru, M.G.; Koppera, S. Public perceptions of mineral criticality and preferences for energy transition strategies in the United States. Commun. Earth Environ. 2024, 5, 768. [Google Scholar] [CrossRef]
- Chowdhury, M.O.; Talan, D. From Waste to Wealth: A Circular Economy Approach to the Sustainable Recovery of Rare Earth Elements and Battery Metals from Mine Tailings. Separations 2025, 12, 52. [Google Scholar] [CrossRef]
- Abbadi, A.; Mucsi, G. A review on complex utilization of mine tailings: Recovery of rare earth elements and residue valorization. J. Environ. Chem. Eng. 2024, 12, 113118. [Google Scholar] [CrossRef]
- Berthet, E.; Lavalley, J.; Anquetil-Deck, C.; Ballesteros, F.; Stadler, K.; Soytas, U.; Hauschild, M.; Laurent, A. Assessing the social and environmental impacts of critical mineral supply chains for the energy transition in Europe. Glob. Environ. Change 2024, 86, 102841. [Google Scholar] [CrossRef]
- Mattila, H.-P.; Zevenhoven, R. Design of a Continuous Process Setup for Precipitated Calcium Carbonate Production from Steel Converter Slag. ChemSusChem 2014, 7, 903–913. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.; Mei, X.; Saxén, H.; Zevenhoven, R. Research progress of steel slag-based carbon sequestration. Fundam. Res. 2025, 5, 282–287. [Google Scholar] [CrossRef]
- Zhao, Q.; Chu, X.; Mei, X.; Meng, Q.; Li, J.; Liu, C.; Saxén, H.; Zevenhoven, R. Co-treatment of Waste From Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization. Front. Chem. 2020, 8, 571504. [Google Scholar] [CrossRef]
- Capso. Cement Mineralization. Available online: https://www.capso.com/methodologies/cement-mineralization/ (accessed on 12 March 2025).
- Stutt, A. Arca Climate Technologies Launches Pilot Project with BHP to Capture CO2 from Mine Waste; MINING.COM: Toronto, ON, Canada, 2023. [Google Scholar]
- ARCA. Industrial-Scale Carbon Removal. Available online: https://arcaclimate.com/what-we-do/ (accessed on 12 March 2025).
- CICE. The Arca Carbon Sandbox Project; The B.C. Centre for Innovation and Clean Energy: Vancouver, BC, Canada, 2024. [Google Scholar]
- Wickramasinghe, S. UBC-Led Project Combats Emissions by Locking Carbon Dioxide in Mine Waste; The University of British Columbia: Kelowna, BC, Canada, 2019. [Google Scholar]
- Eve, P. Carbon Dioxide Utilization 2025–2045: Technologies, Market Forecasts, and Players. IDTechEx. Available online: https://www.idtechex.com/en/research-report/carbon-dioxide-utilization/1028 (accessed on 12 March 2025).
- Yuen, Y.T.; Sharratt, P.N.; Jie, B. Carbon dioxide mineralization process design and evaluation: Concepts, case studies, and considerations. Environ. Sci. Pollut. Res. 2016, 23, 22309–22330. [Google Scholar] [CrossRef]
- Verified Market Reports. CO2 Mineralization Technology Market; 717846. Available online: https://www.verifiedmarketreports.com/product/co2-mineralization-technology-market/ (accessed on 12 March 2025).
- Alturki, A. The Global Carbon Footprint and How New Carbon Mineralization Technologies Can Be Used to Reduce CO2 Emissions. ChemEngineering 2022, 6, 44. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef] [PubMed]
- Naraharisetti, P.K.; Yeo, T.Y.; Bu, J. New classification of CO2 mineralization processes and economic evaluation. Renew. Sustain. Energy Rev. 2019, 99, 220–233. [Google Scholar] [CrossRef]
- Khoo, H.H.; Sharratt, P.N.; Bu, J.; Yeo, T.Y.; Borgna, A.; Highfield, J.G.; Björklöf, T.G.; Zevenhoven, R. Carbon Capture and Mineralization in Singapore: Preliminary Environmental Impacts and Costs via LCA. Ind. Eng. Chem. Res. 2011, 50, 11350–11357. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.; Miao, E.; Wang, Y.; Zhang, T.; Xiao, Y.; Liu, Z.; Ma, J.; Xiong, Z.; Zhao, Y.; et al. Accelerated CO2 mineralization technology using fly ash as raw material: Recent research advances. Chem. Eng. J. 2024, 488, 150676. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, K.H.; Ha, H.Y.; Jung, K.-D.; Lee, J.H. Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag. J. CO2 Util. 2020, 37, 113–121. [Google Scholar] [CrossRef]
- Tiefenthaler, J.; Braune, L.; Bauer, C.; Sacchi, R.; Mazzotti, M. Technological Demonstration and Life Cycle Assessment of a Negative Emission Value Chain in the Swiss Concrete Sector. Front. Clim. 2021, 3, 729259. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages | Costs (per Ton of CO2) | Environmental Impacts |
---|---|---|---|---|
Direct Air Capture (DAC) through chemical or solid sorbents |
|
| USD 250–600 [16,17] |
|
Afforestation/ Reforestation |
| <USD 50 [19,22] |
| |
Soil carbon sequestration |
|
| Variable, <USD 100 [25] |
|
Enhanced weathering by spreading crushed silicate rocks on land or ocean |
|
| USD 20–200 [27,28] |
|
Ocean fertilization |
|
| USD 7–1500 [32] |
|
Carbon capture, utilization, and storage (CCUS) |
|
| USD 15–120 for industrial sources [35] |
|
Mineralization Techniques | Technical Procedure | Environmental Consideration | TRL | Energy Demand (MWh/tCO2) |
---|---|---|---|---|
In Situ Mineralization | Utilizes underground rock formations for CO2 injection, minimizing transport costs but requiring specific geology. | Pros: Permanent storage (geological timescale), low leakage risk, and minimal surface disruption. Cons: Limited by suitable geological formations and site availability. | 8–9 | 1.8 |
Ex Situ Mineralization | Relies on mined minerals or industrial solid wastes, with costs tied to mining, grinding, and processing. | Pros: Uses industrial waste or mined minerals, enabling co-location with emission sources. Cons: Energy-intensive grinding (around 30% of total cost) and mineral logistics challenge. | 5–6 | 2.7–3.7 |
Carbonation Methods | Process/Mechanisms |
---|---|
Direct dry | Direct reaction of gaseous CO2 with solid feedstocks at high temperature and pressure to form carbonates in one step |
Indirect dry | Involves two-step process: 1. Dissolution or extraction of metal ions from feedstocks using chemical agents; 2. Carbonation of the extracted ions with CO2 |
Direct wet | Both feedstocks and CO2 dissolve in water; the extracted ions in aqueous solution react with dissolved CO2 to form carbonates in a single reactor |
Indirect wet | Involves two-step process: 1. Dissolve minerals in water or acidic/basic solvents to release ions; 2. Reaction of the dissolved ions with dissolved CO2 (or carbonate ions) to form carbonates |
Carbonation Methods | Advantages | Challenges |
---|---|---|
Direct |
|
|
Indirect |
| |
Dry |
|
|
Wet |
|
|
Leaching Agents | Chemical Formula | Effectiveness | Regeneration Potential | Remarks | Ref. |
---|---|---|---|---|---|
Hydrochloric Acid | HCl | Extremely effective for Ca and Mg extraction from silicates and slags. | Low, requires external energy (e.g., electrodialysis). | Corrosive and generates waste, making it less sustainable. | [138,139] |
Sulfuric Acid | H2SO4 | Highly effective for Ca and Mg extraction but limited by gypsum formation. | Moderate; regeneration is energy- intensive. | Suitable for industrial carbonation application but generates sulfate waste. | [140,141] |
Nitric Acid | HNO3 | Highly effective for Ca, Mg, and metal extraction from slag. | Moderate; energy-intensive regeneration required; nitrate waste limits sustainability. | Strong oxidizing agent, effective for combined carbonation and metal recovery processes. | [142,143,144] |
Acetic Acid | CH3COOH | Moderate; effective for calcium extraction under mild conditions. | High; recyclable via precipitation and separation. | Less corrosive, reduces energy consumption, and produces high-purity carbonates. | [142,143,144] |
Ammonium Bisulfate | (NH4) HSO4 | Initially high; gypsum formation limits free Ca concentration during leaching. | High; regenerable via thermal decomposition of ammonium sulfate ((NH4)2SO4) | Suitable for selective leaching but may require optimization to avoid gypsum byproduct. | [145,146] |
Ammonium Chloride | NH4Cl | Effective for Ca extraction. | High; regenerated by CO2 and weak acids. | Produces pure calcium carbonate without impurities; widely applied. | [144,145,147,148] |
Ammonium Bicarbonate | NH4HCO3 | Moderate; effective under specific Mg: NH4 ratios | High; regenerated by reacting CO2 with NH3. | Acts as both a leaching agent and CO2 source, simplifying the carbonation process. | [71,149] |
Ammonium Nitrate | NH4NO3 | Effective for Ca leaching and CO2 absorption. | Limited data on regeneration efficiency. | Nitrate waste management is a challenge, making it less eco-friendly compared to fully recyclable ammonium salts. | [150,151] |
Ammonium Hydroxide | NH4OH | Moderate; effective for Mg-rich silicates and industrial residues. | High; regenerated via CO2 and NH3 reactions. | Non-corrosive, environmentally friendly, and supports selective carbonate precipitation. | [152,153] |
Ammonium Acetate | CH3COONH4 | High; selective for Ca extraction. | High; recyclable via CO2 and NH3 regeneration. | Produces high-purity carbonate with minimal impurities. | [150,151] |
Factors | Impacts on the Reaction Rate | Optimal Ranges |
---|---|---|
Particle size | Smaller particles → Higher specific surface area → More active sites → Higher reaction rate | 38–100 µm for industrial waste [116], 10–100 µm for mine tailings [123]. |
Temperature | Higher temperature → Greater solubility of minerals in the aqueous solution → Higher dissolution of Ca2+ and Mg2+ ions → Higher reaction rate | 25–80 °C for industrial waste [127], 150–200 °C for minerals [69,126]. |
CO2 pressure | Higher CO2 pressure → Greater solubility of CO2 in aqueous solution → Higher reaction rate | 1–20 bar for industrial waste [72,132,133], >50 bar for mining wastes [126]. |
pH Value | Low pH Value → Ca2+ and Mg2+ extraction High pH Value → Carbonate precipitation | 2–5 for mineral dissolution, 8–12 for carbonation [69,136]. |
Reaction time | Higher reaction time → Higher dissolution of Ca2+ and Mg2+ ions → Higher reaction rate | Minutes to hours for industrial waste under optimized conditions and days to years for natural silicates [58]. |
S/L ratio | Higher S/L ratio → Greater availability of reactive surface area relative to the liquid phase → Higher reaction rate | 10–20 mL/g [156,162,163]. |
Slags | CaO | MgO | SiO2 | Al2O3 | Fe2O3 | SO3 | MnO | Ref. |
---|---|---|---|---|---|---|---|---|
BF | 42.5 | 4.81 | 31.9 | 13 | 0.34 | 3.99 | _ | [183] |
42.81 | 4.06 | 31.67 | 7.68 | 2.76 | 6.35 | 0.84 | [184] | |
BOF | 41.5 | 6.2 | 15.0 | 4.1 | 22.5 | 0.1 | _ | [185] |
46.7 | 6.3 | 14.8 | 5.5 | 18.4 | _ | 2.8 | [186] | |
38.6 | 7.7 | 15.5 | 5.4 | 25.5 | 0.2 | 1.9 | [187] | |
EAF | 30.0 ± 1 | 6.0 ± 0.4 | 10.9 ± 0.5 | 6.7 ± 0.4 | 38.0 ± 1 | 0.3 ± 0.1 | _ | [127] |
23.0 ± 1 | 6.2 ± 0.4 | 12.4 ± 0.5 | 7.9 ± 0.4 | 44.0 ± 1 | 0.4 ± 0.1 | _ | ||
25.0 ± 1 | 6.2 ± 0.4 | 27.0 ± 1 | 2.2 ± 0.2 | 30.0 ± 1 | 0.2 ± 0.1 | _ | ||
29.5 | 4.3 | 5.7 | 5.2 | 48.5 | _ | _ | [188] | |
LF | 51.5 | 11.3 | 28.3 | 1.2 | _ | _ | _ | [189] |
50.06 | 7.09 | 23.75 | 6.13 | 8.30 | 1.70 | 1.86 | [184] |
CM Route | Slag Type | Reagent | Particle Size (µm) | CO2 Pressure (MPa) | Temperature (°C) | Time | L/S Ratio | Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|---|
Direct Aqueous | BF | NaOH | <35 | 0.15 | 25 | 6 h | _ | CCa = 28% | [191] |
BF | _ | <10 | 3 | 50 | 48 h | 2:1–3:1 | ~70 kg CO2/tslag | [183] | |
BF | NaCl | <75 | 3 | 150 | 4 h | 10:1 | 280 kgCO2/tslag | [158] | |
EAF | _ | ~24 | 1.1 | Ambient | 10 min | 10:1 | CCa = 21% | [192] | |
EAF | Water | <150 | 1 | 100 | 24 h | 5 mL/g | 280 kgCO2/tslag | [193] | |
EAF | Distilled water | <63 | 1.5 | Ambient | 3 h | 5:1 | 58.4 kgCO2/tslag | [194] | |
BOF | Water | 25–37 | 0.1 | 90 | 240 h | _ | CCa = 70% | [195] | |
BOF | Water | <500 | _ | 100 | 24 h | 5 g/g | 410 kgCO2/tslag | [196] | |
BOF | CRW | <62 | 0.1 | 25 | 1 min | 20 mL/g | 83.8 kgCO2/tslag | [197] | |
BOF | CRW | <45 | Ambient | Ambient | 8.5 min | 20 mL/g | 195 kgCO2/tslag | [198] | |
BOF | CRW | <44 | 0.1 | Ambient | 2 h | 20:1 | 283 kgCO2/tslag CCa = 89.4% | [199] | |
BOF | Seawater | _ | 0.1 | 30 | _ | _ | CCa > 95% | [200] | |
LF | _ | 39.4 | 0.3 | 55 | 24 h | 0.18 mL/g | 17 kgCO2/tslag | [201] | |
Direct gas–solid | SS | _ | <74 | 0.1 | 600 | 1 h | _ | 88.5 kgCO2/tslag | [202] |
EAF | Deionized water | 38–106 | 0.1 | 20 | 24 h | _ | 17.4 kgCO2/tslag | [203] | |
Indirect | BF | NH4NO3 NH4Cl CH3COONH4 (NH4)2SO4 | _ | 0.1 | 30 | 1 h | 100 mL/g | ECa = 49.76% ECa = 49.67% ECa = 59.59% ECa = 34.72% | [204] |
BF | CH3COOH/EDTA | <74 | 0.1 | 25 | 10 min | _ | 90 kgCO2/tslag | [205] | |
BF | Aqua Regia | <74 | 0.1 | 70 | 2 h | 20 vol% | ECa = 100% | [206] | |
BF | NH4HSO4 | <150 | _ | 50 | 30 min | 0.94 | 263 kgCO2/tslag | [207] | |
EAF | NH4Cl | 74~97 | _ | 60 | _ | _ | ECa = 55% CCa = 100% | [154] | |
BOF | NH4Cl CH3COOH HCl | <63 | 0.1 | 80 | 1 h | _ | ECa = 60% ECa = 81.7% ECa = 91% | [208] | |
BOF | NH4NO3 NH4Cl CH3COOH | 125~250 | _ | Ambient | 1 h | 5 mL/g | ECa~55% | [209] | |
BOF | NH4Cl | 0–50 | _ | 25 | 30 min | 10 mL/g | ECa = 50% | [210] | |
BOF | NH4HSO4 | 75~150 | _ | 90 | 3 h | 20 mL/g | EMg = 85% | [146] | |
BOF | NH4Cl | 38~250 | 1 | 60 | 1 h | 10:1 | 211 kgCO2/tslag | [211] |
Cement Wastes | CaO | MgO | SiO2 | Al2O3 | Fe2O3 | SO3 | K2O | LOI | Free Lime | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
CKD | 38–50 | 0–2 | 11–16 | 3–6 | 1–4 | 4–18 | 3–13 | 5–25 | 1–10 | [221] |
OPC | 62–64 | 1–2.6 | 20–22 | 4–5 | 3–3.6 | 2.7–3 | <1 | 1 | 2 | |
OPC | 64.5 | 2.2 | 19.8 | 5.2 | 3.5 | 2.9 | 0.2 | _ | _ | [225] |
CKD | 51.12 | 1.67 | 17.10 | 3.29 | 3.38 | 0.29 | _ | 21.74 | _ | [226] |
CKD | 42.7 | 2.8 | 13.7 | 4.6 | 2.1 | 0.94 | 3.4 | _ | _ | [227] |
CSW | 36.92 | 1.88 | 32.84 | 8.21 | 6.72 | 2.81 | 1.6 | 8.58 | _ | [228] |
CM Route | Cement Waste Type | Reagent | Particle Size (µm) | CO2 Pressure (MPa) | Temperature (°C) | Time | L/S Ratio | Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|---|
Direct aqueous | CKD | _ | <106 | 1.5 | Ambient | 24 h | 1.5 mL/g | 48 kgCO2/tCKD | [127] |
RCP | _ | <90 | 0.8 | 80 | 15 h | _ | CCa = 100% | [220] | |
CBD | _ | <250 | 0.2 | Ambient | 72 h | _ | CCa = 26% | [225] | |
Waste cement | _ | <80 | 0.4 | Ambient | 0.8 h | 1 mL/g | CCa =16.5 | [233] | |
Waste cement | _ | <100 | 3.0 | ~50 | 10 min | 3.45 wt% | CCa > 67% | [234] | |
OPC | _ | _ | 0.3 | 25 | 24 h | 0.125 mL/g | CCa = 22% | [235] | |
OPC | _ | _ | 9.7 | 59 | 24 h | 0.6 g/g | 162 kgCO2/tOPC | [236] | |
Direct gas–solid | CKD | _ | 28–46 | 0.1 | Ambient | <2 days | _ | CCa = 75–80% | [237] |
CSW | _ | _ | 0.01 | 23 ± 3 | 144 h = 6 days | _ | 110 kgCO2/tCSW | [228] | |
Indirect | CKD | HNO3 | <46 | _ | 90 | 28 min | 13.8 g CKD | ECa = 99% CCa = 89.2% | [226] |
CKD | HCl CH3COOH NH4Cl NH4CH3CO2 C6H5Na3O7 | 23.08 | _ | 25 | 30 min | 10:1 | ECa = 94.3% ECa = 93.7% ECa = 86.9% ECa = 85.3% ECa = 70% | [227] |
Mine Tailings | CaO | MgO | SiO2 | Al2O3 | Fe2O3 | SO3 | K2O | TiO2 | Na2O | LOI | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Serpentine | 2.3 | 40.4 | 39.1 | 1.8 | 9.2 | _ | _ | _ | 6.0 | _ | [240] |
Stillwater tailing | 13.30 | 8.55 | 45.58 | 22.98 | 5.14 | _ | 0.08 | _ | 1.30 | 2.29 | [123] |
Raw tailing | 3.68 | 24.10 | 38.80 | 7.21 | 18.40 | 4.67 | 0.52 | 0.50 | 1.09 | _ | [242] |
Serpentine | 0.14 | 44.27 | 40.47 | 1.11 | 12.27 | 0.15 | _ | _ | _ | _ | [160] |
CM Route | Tailing Type | Reagent | Particle Size (µm) | CO2 Pressure (MPa) | Temperature (°C) | Time | L/S Ratio | Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|---|
Direct aqueous | Stillwater | water | d90 < 100 | 0.1 | 22 | 60 h | _ | CCa < 1% 1.79 kgCO2/ttailing | [123] |
Indirect | PGM | HCl NaOH | d50 < 84 d90 < 283 | _ | 70 | 8 h | 50:1 | ECa, CCa = 31.2, 29.9% EMg, CMg = 5, 2.9% EFe, CFa = 9, 8.9% | [241] |
Raw Tailing | HCl NH4OH | d50 = 75.9 d90 = 133.5 | 0.1 | 100 | 3 h | 10 mL/g | EMg = 82.33% | [242] | |
Serpentine | HCl | d50 = 69 | 0.1 | 70 | 2 h | _ | EMg = 71% EFe = 85% | [240] | |
Serpentine | CH3COOH NH4OH | <125 | _ | 80 | 2 h | 20:1 | EMg = 66.64% | [160] |
Product | Applications | Global Market Size in 2022 (USD Million) | Annual Growth Rate (2020–2030) |
---|---|---|---|
Magnesium carbonate | Cement/concrete, building material, food processing, cosmetic, insulation, whitener | 689 | 5.1% |
Calcium carbonate | Steel manufacture, additive to asphalt, soli stabilizer, paper industry, paint and coating, waste treatment, food and nutrition | 44,500 | 5.4% |
Silica | Cement/concrete and ceramic production, glass industry, water filtration, paint and coating, fertilizer, tires | 49,120 | 9.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamedi, H.; Gonzales-Calienes, G.; Shadbahr, J. Ex Situ Carbon Mineralization for CO2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review. Clean Technol. 2025, 7, 44. https://doi.org/10.3390/cleantechnol7020044
Hamedi H, Gonzales-Calienes G, Shadbahr J. Ex Situ Carbon Mineralization for CO2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review. Clean Technologies. 2025; 7(2):44. https://doi.org/10.3390/cleantechnol7020044
Chicago/Turabian StyleHamedi, Hamideh, Giovanna Gonzales-Calienes, and Jalil Shadbahr. 2025. "Ex Situ Carbon Mineralization for CO2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review" Clean Technologies 7, no. 2: 44. https://doi.org/10.3390/cleantechnol7020044
APA StyleHamedi, H., Gonzales-Calienes, G., & Shadbahr, J. (2025). Ex Situ Carbon Mineralization for CO2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review. Clean Technologies, 7(2), 44. https://doi.org/10.3390/cleantechnol7020044