A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators
Abstract
1. Introduction
2. Quenching Measurements in EJ-200 and LYSO Scintillators
3. Measurement with Charged Particles
4. Scintillation Quenching Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LYSO | Lutetium–yttrium oxyorthosilicate |
MIP | Minimum Ionizing Particle |
PMT | Photomultiplier Tube |
References
- Birks, J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs in Electronics and Instrumentation; Elsevier: Amsterdam, The Netherlands, 2013; Volume 27. [Google Scholar]
- Kube, G.; Liu, S.; Novokshonov, A.; Scholz, M. Identification and Mitigation of Smoke-Ring Effects in Scintillator-Based Electron Beam Images at the European XFEL. In Proceedings of the FEL’19 39th Free Electron Laser Conference, Hamburg, Germany, 26–30 August 2019; JACoW Publishing: Geneva, Switzerland, 2019; pp. 301–306. [Google Scholar] [CrossRef]
- Kounine, A.; Weng, Z.; Xu, W.; Zhang, C. Precision measurement of 0.5GeV–3TeV electrons and positrons using the AMS Electromagnetic Calorimeter. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 110–117. [Google Scholar] [CrossRef]
- Tretyak, V. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 2010, 33, 40–53. [Google Scholar] [CrossRef]
- Tretyak, V.I. Semi-empirical calculation of quenching factors for scintillators: New results. EPJ Web Conf. 2014, 65, 02002. [Google Scholar] [CrossRef]
- Adriani, O.; Berti, E.; Betti, P.; Bigongiari, G.; Bonechi, L.; Bongi, M.; Bottai, S.; Brogi, P.; Castellini, G.; Checchia, C.; et al. Light yield non-proportionality of inorganic crystals and its effect on cosmic-ray measurements. J. Instrum. 2022, 17, P08014. [Google Scholar] [CrossRef]
- Tarle, G.; Ahlen, S.P.; Cartwright, B.G. Cosmic ray isotope abundances from chromium to nickel. ApJ 1979, 230, 607–620. [Google Scholar] [CrossRef]
- Moses, W.W.; Payne, S.A.; Choong, W.S.; Hull, G.; Reutter, B.W. Scintillator Non-Proportionality: Present Understanding and Future Challenges. IEEE Trans. Nucl. Sci. 2008, 55, 1049–1053. [Google Scholar] [CrossRef]
- Payne, S.A.; Cherepy, N.J.; Hull, G.; Valentine, J.D.; Moses, W.W.; Choong, W.S. Nonproportionality of Scintillator Detectors: Theory and Experiment. IEEE Trans. Nucl. Sci. 2009, 56, 2506–2512. [Google Scholar] [CrossRef]
- Payne, S.A.; Moses, W.W.; Sheets, S.; Ahle, L.; Cherepy, N.J.; Sturm, B.; Dazeley, S.; Bizarri, G.; Choong, W.S. Nonproportionality of Scintillator Detectors: Theory and Experiment. II. IEEE Trans. Nucl. Sci. 2011, 58, 3392–3402. [Google Scholar] [CrossRef]
- Payne, S.; Hunter, S.; Sturm, B.; Cherepy, N.; Ahle, L.; Sheets, S.; Dazeley, S.; Moses, W.; Bizarri, G. Physics of scintillator nonproportionality. In Proceedings of the Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIII, San Diego, CA, USA, 22–24 August 2011; Volume 8142, pp. 251–257. [Google Scholar]
- Beck, P.R.; Payne, S.A.; Hunter, S.; Ahle, L.; Cherepy, N.J.; Swanberg, E.L. Nonproportionality of Scintillator Detectors. V. Comparing the Gamma and Electron Response. IEEE Trans. Nucl. Sci. 2015, 62, 1429–1436. [Google Scholar] [CrossRef]
- Payne, S.A.; Hunter, S.; Ahle, L.; Cherepy, N.J.; Swanberg, E. Nonproportionality of Scintillator Detectors. III. Temperature Dependence Studies. IEEE Trans. Nucl. Sci. 2014, 61, 2771–2777. [Google Scholar] [CrossRef]
- Iredale, P. The effect of the non-proportional response of NaI(Tl) crystals to electrons upon the resolution for γ-rays. Nucl. Instrum. Methods 1961, 11, 340–346. [Google Scholar] [CrossRef]
- Payne, S.A. Nonproportionality of Scintillator Detectors. IV. Resolution Contribution from Delta-Rays. IEEE Trans. Nucl. Sci. 2015, 62, 372–380. [Google Scholar] [CrossRef]
- Eljen Technology: Response of EJ-200 Plastic Scintillator and Berkeley National Laboratory Scintillator Library. Available online: https://eljentechnology.com/images/technical_library/EJ200_Resp.pdf (accessed on 10 April 2025).
- Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K. Electron response of some low-Z scintillators in wide energy range. J. Instrum. 2012, 7, P06011. [Google Scholar] [CrossRef]
- Langford, T.; Beise, E.; Breuer, H.; Heimbach, C.; Ji, G.; Nico, J. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2). J. Instrum. 2016, 11, P01006. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Saare, H.; Ipbüker, C.; Schulte, F.; Mastinu, P.; Paepen, J.; Pedersen, B.; Schillebeeckx, P.; Varasano, G. Characterization of EJ-200 plastic scintillators as active background shield for cosmogenic radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 882, 96–104. [Google Scholar] [CrossRef]
- Laplace, T.; Goldblum, B.; Brown, J.; Bleuel, D.; Brand, C.; Gabella, G.; Jordan, T.; Moore, C.; Munshi, N.; Sweger, Z.; et al. Low energy light yield of fast plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161444. [Google Scholar] [CrossRef]
- Tajudin, S.M.; Namito, Y.; Sanami, T.; Hirayama, H. Response of plastic scintillator to gamma sources. Appl. Radiat. Isot. 2020, 159, 109086. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, P.; Cerasole, D.; Barbato, F.; Bissaldi, E.; Cagnoli, I.; Casilli, E.; De Mitri, I.; De Palma, F.; Di Giovanni, A.; Di Venere, L.; et al. Characterization of light yield non-proportionality in plastic scintillator-based detectors for satellite cosmic-ray experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1069, 169888. [Google Scholar] [CrossRef]
- Nozzoli, F. A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators. Poster Presented at ASAPP2025. Available online: https://indico.cern.ch/event/1463191/contributions/6434257/ (accessed on 29 September 2025).
- Ghezzer, L.E.; Nozzoli, F.; Nicolaidis, R.; De Santis, C.; Iuppa, R.; Zuccon, P. Search for electron capture in Lu176 with a lutetium yttrium oxyorthosilicate scintillator. Phys. Rev. C 2023, 107, 045504. [Google Scholar] [CrossRef]
- Pepin, C.; Berard, P.; Perrot, A.L.; Pepin, C.; Houde, D.; Lecomte, R.; Melcher, C.; Dautet, H. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans. Nucl. Sci. 2004, 51, 789–795. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Swiderski, L.; Moszynski, M.; Szczesniak, T.; Syntfeld-Kazuch, A.; Wanarak, C.; Limsuwan, P. Scintillation Properties of LuAG: Ce, YAG: Ce and LYSO: Ce Crystals for Gamma-Ray Detection. IEEE Trans. Nucl. Sci. 2009, 56, 3800–3805. [Google Scholar] [CrossRef]
- Wanarak, C.; Chewpraditkul, W.; Phunpueok, A. Light yield non-proportionality and energy resolution of Lu1.95Y0.05SiO5: Ce and Lu2SiO5: Ce scintillation crystals. Procedia Eng. 2012, 32, 765–771. [Google Scholar] [CrossRef]
- Khodyuk, I.V.; Dorenbos, P. Trends and Patterns of Scintillator Nonproportionality. IEEE Trans. Nucl. Sci. 2012, 59, 3320–3331. [Google Scholar] [CrossRef]
- So, J.; Kim, H.; Kang, H.; Park, H.; Lee, S.; Kim, S.; Kim, K.; Lee, M. The Proton Energy Response of a LYSO Crystal. J. Korean Phys. Soc. 2008, 52, 925–929. [Google Scholar] [CrossRef]
- Sang, J.K.; MinJeong, K.; Jeongmin, P.; Jooyoung, L.; Jukyung, S.; DaeHoon, H.; Yongseok, H. Measurement of the Proton Luminescence Response and Determination of the Birks Parameters of the LYSO Crystal. New Phys. Sae Mulli 2016, 66, 679–684. [Google Scholar] [CrossRef]
- Koba, Y.; Wakabayashi, G.; Imamura, M.; Uozumi, Y.; Koba, N.; Iwamoto, H.; Ohkawa, H.; Shimazu, T.; Matsufuji, N.; Evtoukhovitch, P.; et al. Light output response of LYSO(Ce) crystal to relativistic helium and carbon ions. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 3, pp. 2303–2306. [Google Scholar] [CrossRef]
- Koba, Y.; Iwamoto, H.; Kiyohara, K.; Nagasaki, T.; Wakabayashi, G.; Uozumi, Y.; Matsufuji, N. Scintillation efficiency of inorganic scintillators for intermediate-energy charged particles. Prog. Nucl. Sci. Technol. 2011, 1, 218–221. [Google Scholar] [CrossRef]
- Kreider, B.; Cox, I.; Grzywacz, R.; Allmond, J.M.; Augustyn, A.; Braukman, N.; Brionnet, P.; Esmaylzadeh, A.; Fischer, J.; Fukuda, N.; et al. Modeling of Light Production in Inorganic Scintillators. arXiv 2025. [Google Scholar] [CrossRef]
- Ricci, E. First use of Monolithic Active Pixel Sensors for tracking particles in space. In Proceedings of the 44th COSPAR Scientific Assembly, Athens, Greece, 16–24 July 2022; Volume 44, p. 3057. [Google Scholar]
- Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W.; et al. Proton beam characterization in the experimental room of the Trento Proton Therapy facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 15–20. [Google Scholar] [CrossRef]
- Giordanengo, S.; Garella, M.A.; Marchetto, F.; Bourhaleb, F.; Ciocca, M.; Mirandola, A.; Monaco, V.; Hosseini, M.A.; Peroni, C.; Sacchi, R.; et al. The CNAO dose delivery system for modulated scanning ion beam radiotherapy. Med. Phys. 2015, 42, 263–275. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimiccoli, F.; Follega, F.M.; Ghezzer, L.E.; Iuppa, R.; Lega, A.; Nicolaidis, R.; Nozzoli, F.; Ricci, E.; Verroi, E.; Zuccon, P. A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators. Particles 2025, 8, 82. https://doi.org/10.3390/particles8040082
Dimiccoli F, Follega FM, Ghezzer LE, Iuppa R, Lega A, Nicolaidis R, Nozzoli F, Ricci E, Verroi E, Zuccon P. A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators. Particles. 2025; 8(4):82. https://doi.org/10.3390/particles8040082
Chicago/Turabian StyleDimiccoli, Francesco, Francesco Maria Follega, Luigi Ernesto Ghezzer, Roberto Iuppa, Alessandro Lega, Riccardo Nicolaidis, Francesco Nozzoli, Ester Ricci, Enrico Verroi, and Paolo Zuccon. 2025. "A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators" Particles 8, no. 4: 82. https://doi.org/10.3390/particles8040082
APA StyleDimiccoli, F., Follega, F. M., Ghezzer, L. E., Iuppa, R., Lega, A., Nicolaidis, R., Nozzoli, F., Ricci, E., Verroi, E., & Zuccon, P. (2025). A New Measurement of Light Yield Quenching in EJ-200 and LYSO Scintillators. Particles, 8(4), 82. https://doi.org/10.3390/particles8040082