Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = bioaerosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 633 KB  
Review
Antibiotic Resistance Genes in Food Animal Production: Environmental Implications and One Health Challenges
by Konrad Wojnarowski, Paulina Cholewińska, Dongqinq Zhao, Jakub Pacoń and Robert Bodkowski
Environments 2025, 12(11), 427; https://doi.org/10.3390/environments12110427 - 9 Nov 2025
Viewed by 315
Abstract
Antibiotics have revolutionized medicine and animal production, yet their extensive use has accelerated the emergence and spread of antimicrobial resistance (AMR). Beyond clinical contexts, livestock and aquaculture are now recognized as major contributors to the global resistome. This review synthesizes evidence across cattle, [...] Read more.
Antibiotics have revolutionized medicine and animal production, yet their extensive use has accelerated the emergence and spread of antimicrobial resistance (AMR). Beyond clinical contexts, livestock and aquaculture are now recognized as major contributors to the global resistome. This review synthesizes evidence across cattle, poultry, swine, sheep and goats, and aquaculture, highlighting how antimicrobial usage shapes resistance at the human–animal–environment interface. A substantial proportion of administered drugs is excreted unmetabolized, leading to the accumulation of unmetabolized antimicrobial residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in soils, manures, waters, sediments, and air. These reservoirs function as long-term sources and dissemination pathways through runoff, leaching, bioaerosols, effluents, and biological vectors. Despite different production systems, similar ARG families dominate, particularly those conferring resistance to tetracyclines, sulfonamides, and β-lactams. Mobile genetic elements and co-selectors such as heavy metals, disinfectants, and microplastics reinforce their persistence. Aquaculture, where water serves both as habitat and vector, emerges as a critical hotspot, while small ruminant systems remain under-researched despite their importance in many low- and middle-income countries. This synthesis highlights convergent patterns across sectors: antimicrobial use drives ARG enrichment; manures, litters, sediments, and effluents act as persistent reservoirs; and dissemination routes connect farms, ecosystems, and human populations. Within a One Health framework, mitigation requires preventive strategies—vaccination, biosecurity, and optimized waste management—supported by harmonized stewardship policies and integrated environmental surveillance. Full article
Show Figures

Figure 1

30 pages, 2375 KB  
Review
Airborne Fungal Communities: Diversity, Health Impacts, and Potential AI Applications in Aeromycology
by Divjot Kour, Sofia Sharief Khan, Meenakshi Gusain, Akshara Bassi, Tanvir Kaur, Aman Kataria, Simranjeet Kaur and Harpreet Kour
Aerobiology 2025, 3(4), 10; https://doi.org/10.3390/aerobiology3040010 - 30 Oct 2025
Viewed by 477
Abstract
International interests in bioaerosols have gained an increased attention to widen the knowledge pool of their identification, distribution, and quantification. Aeromycota signify a complex and diverse group of fungi dispersed through the atmosphere. Aeromycology is an important field of research due to its [...] Read more.
International interests in bioaerosols have gained an increased attention to widen the knowledge pool of their identification, distribution, and quantification. Aeromycota signify a complex and diverse group of fungi dispersed through the atmosphere. Aeromycology is an important field of research due to its important role in human health. Aeromycoflora both indoors and outdoors, are responsible for many allergies and other respiratory diseases. The present review describes the diversity of the aeromycoflora, the techniques used for sampling, identification, and taxonomic classification, and the limitations of the traditional culture-based methods as they fail to detect unculturable species. Furthermore, the spatial and temporal variability in aeromycota complicate consistent monitoring. Both indoor and outdoor environments harbor airborne fungi. The diversity in indoor environments is greatly shaped by the moisture content, building design, and ventilation, which are further taken into consideration. Further, the health impacts of the indoor and outdoor fungi have been discussed and what control measures can be taken to reduce the exposure risks and management strategies that can be adopted. Artificial intelligence (AI) can bring revolution in this field of research and can help in improving detection, monitoring, and classification of airborne fungi. The review finally outlines the emerging role of AI in aeromycology. Full article
Show Figures

Figure 1

37 pages, 460 KB  
Review
Exposure Risks from Microbiological Hazards in Buildings and Their Control—A Rapid Review of the Evidence
by Alan Beswick, Brian Crook, Becky Gosling, Claire Bailey, Iwona Rosa, Helena Senior, Paul Johnson, Ruby Persaud, Penny Barker, Paul Buckley, John Saunders, Jack Hulme and Ali Ahmed
Atmosphere 2025, 16(11), 1243; https://doi.org/10.3390/atmos16111243 - 29 Oct 2025
Viewed by 590
Abstract
A rapid review was undertaken to consider the evidence for human exposure to harmful microorganisms from indoor air and surfaces. Published information about these contaminants, as well as measures to control them, including building design and energy conservation, were included in this review. [...] Read more.
A rapid review was undertaken to consider the evidence for human exposure to harmful microorganisms from indoor air and surfaces. Published information about these contaminants, as well as measures to control them, including building design and energy conservation, were included in this review. Information on domestic dwellings, office environments, and other non-industrial settings was assessed to determine the reported prevalence, persistence, and transmission of microorganisms in these settings. Environmental factors that influence indoor microbiological colonization were also included. The evidence strongly indicates that ventilation is the primary factor for controlling indoor dampness, helping to mitigate indoor mold colonization and the accumulation of other indoor contaminants, including infectious microorganisms. Although modern building airtightness, including retrofits of older builds, contributes to thermal comfort and building energy efficiency, this may also limit a building’s ventilation capacity. This in turn can potentially allow biological pollutants to accumulate, increasing the likelihood of harmful exposures and ill-health effects for building occupants. Effective building design and maintenance, which promote appropriate levels of air exchange for indoor spaces, are therefore important for the control of indoor moisture and microbiological contamination. Full article
(This article belongs to the Special Issue Indoor Environmental Quality, Health and Performance)
15 pages, 3319 KB  
Article
Next-Generation Airborne Pathogen Detection: Flashing Ratchet Potential in Action
by Yazan Al-Zain, Mohammad Bqoor, Maha Albqoor and Lujain Ismail
Chemosensors 2025, 13(10), 371; https://doi.org/10.3390/chemosensors13100371 - 16 Oct 2025
Viewed by 622
Abstract
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic [...] Read more.
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic emission and three-body electron attachment. As these ions interact with airborne particles in the detection zone, measurable perturbations in the ECS profile emerge, yielding distinct spectral signatures that indicate particle presence. Proof-of-concept experiments, using standardized talcum powder aerosols as surrogates for viral-scale particles, established optimal operating parameters of 6 V potential and 600 kHz modulation frequency, with reproducible detection signals showing a relative shift of 4.5–13.4% compared to filtered-air controls. The system’s design concept incorporates humidity-resilient features, intended to maintain stability under varying environmental conditions. Together with the proposed size selectivity (50–150 nm), this highlights its potential robustness for real-world applications. To the best of our knowledge, this is the first demonstration of an open-air electro-ratchet transport system coupled with electric current spectroscopy for bioaerosol monitoring, distinct from prior optical or electrochemical airborne biosensors, highlighting its promise as a tool for continuous environmental surveillance in high-risk settings such as hospitals, airports, and public transit systems. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Graphical abstract

3 pages, 161 KB  
Editorial
Bioaerosols in Urban Settings: Roles of Climate Change, Ecosystem Services and Human Health
by Athanasios Charalampopoulos, Ioanna Pyrri and Athanasios Damialis
Aerobiology 2025, 3(4), 9; https://doi.org/10.3390/aerobiology3040009 - 13 Oct 2025
Viewed by 319
Abstract
Urban environments constitute of spaces in which the majority of humankind reside, work and recreate [...] Full article
14 pages, 2520 KB  
Article
Distribution of Airborne Fungi in Vehicles and Its Association with Usage Patterns
by Raúl Asael Rodríguez-Villarreal, Mariana Elizondo-Zertuche, Nydia Orué-Arreola, Juan Adame-Rodríguez, Larissa E. Gordillo-Mata, Miguel González-Enríquez, Brandon Ortega-Castillo, Patricio Adrián Zapata-Morín and Efrén Robledo-Leal
J. Fungi 2025, 11(10), 725; https://doi.org/10.3390/jof11100725 - 10 Oct 2025
Viewed by 601
Abstract
Airborne fungal exposure in confined indoor environments is a growing public health concern, however the microbial composition of air inside private vehicles remains underexplored. This study aimed to characterize culturable airborne fungi in vehicle cabins and evaluate their association with environmental and behavioral [...] Read more.
Airborne fungal exposure in confined indoor environments is a growing public health concern, however the microbial composition of air inside private vehicles remains underexplored. This study aimed to characterize culturable airborne fungi in vehicle cabins and evaluate their association with environmental and behavioral variables. Air samples (100 L) were collected from 69 vehicles using a standardized culture-based method. Simultaneously, a detailed survey was administered to vehicle owners to document usage patterns, maintenance habits, and odor perception. Results revealed a total culturable fungal load of 31,901 CFU/m3, with Cladosporium, Aspergillus, and Penicillium as the most frequently isolated genera. Statistical analysis showed that fungal abundance and community composition were significantly associated with vehicle usage factors such as air disturbance, parking environment, air filter maintenance, and perception of musty odors. Vehicles parked outdoors had significantly higher Bipolaris levels, while lack of regular filter replacement was strongly associated with elevated Alternaria abundance. The presence of musty or moldy odors correlated with a 2.5-fold increase in Aspergillus levels. Redundancy analysis confirmed that odor perception and parking behavior were the strongest predictors of fungal community structure, with specific genera displaying distinct ecological preferences across usage conditions. Usage patterns and maintenance habits significantly influence in-cabin fungal communities, with implications for respiratory health, particularly due to the presence of allergenic and opportunistic genera like Aspergillus, Alternaria, and Bipolaris. Regular air filter maintenance and attention to odor cues may help reduce fungal load and associated health risks. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

12 pages, 1427 KB  
Article
Distribution of Aerosol Bacteria in Broiler Houses at Different Growth Stages During Winter
by Xuejing Wang, Huan Cui, Zhenyue Li, Zitong Yang, Huage Liu, Jue Wang, Ning Zhang, Jiuxi Li, Xiaolong Chen, Cheng Zhang and Juxiang Liu
Animals 2025, 15(19), 2859; https://doi.org/10.3390/ani15192859 - 30 Sep 2025
Viewed by 335
Abstract
Airborne bacterial aerosols are a significant yet understudied component of intensive poultry farming, particularly in cold climates. This study characterized the concentration, size distribution, and community composition of airborne bacteria in closed-cage broiler houses during winter in Hebei Province, China. Air sampling was [...] Read more.
Airborne bacterial aerosols are a significant yet understudied component of intensive poultry farming, particularly in cold climates. This study characterized the concentration, size distribution, and community composition of airborne bacteria in closed-cage broiler houses during winter in Hebei Province, China. Air sampling was conducted at three growth stages (7, 21, and 35 days) and analyzed using culture-based methods and 16S rRNA sequencing. Culturable bacterial concentrations increased significantly with broiler age, from 1.1 × 103 to 1.6 × 104 CFU/m3. The particle size distribution shifted from a predominance of large particles (≥4.7 µm) at day 7 to a dominance of small, inhalable particles (<4.7 µm) thereafter. Sequencing revealed increasing bacterial richness and diversity with age, alongside significant community structural shifts. Predominant genera included Stenotrophomonas, Lactobacillus, and Ruminococcus. Notably, potential zoonotic pathogens (Shigella and Acinetobacter) were detected in later stages. This study provides critical insights into winter bioaerosol dynamics, highlighting implications for animal welfare, occupational health, and public health. Full article
Show Figures

Figure 1

19 pages, 2160 KB  
Article
Unveiling Microbial Diversity in Greek Urban Air and Recreational Seawater Using DNA Barcoding
by Angelina Metaxatos, Dafni Georgiadou, Dimitris G. Hatzinikolaou and Gediminas Mainelis
Atmosphere 2025, 16(9), 1082; https://doi.org/10.3390/atmos16091082 - 14 Sep 2025
Viewed by 502
Abstract
Air and seawater samples were collected in 2022–2023 and analyzed through a common DNA extraction, purification, and Next-Generation Sequencing protocol. The study targeted bacteria, archaea, fungi, and plant-associated taxa to compare community structure across both milieus. Given the scarcity of data on environmental [...] Read more.
Air and seawater samples were collected in 2022–2023 and analyzed through a common DNA extraction, purification, and Next-Generation Sequencing protocol. The study targeted bacteria, archaea, fungi, and plant-associated taxa to compare community structure across both milieus. Given the scarcity of data on environmental microbiomes in Greece, we aimed to investigate further the diversity and variability of these microbiomes for the first time, using barcoding to provide data on microbial signatures in the air and seawater. Sequencing data revealed significant spatial and seasonal variability and a high diversity and richness of microbiome communities in both habitats. After quality filtering, we detected 21 phyla and 345 genera of bacteria and archaea, 3 phyla and 149 genera of fungi, and 17 Viridiplantae orders in the urban air. At the same time, in the recreational waters, we isolated 20 phyla and 420 genera of bacteria and archaea, 2 phyla, and 53 genera of fungi and 19 orders of Viridiplantae. Many of the fungal and bacterial taxa detected in this study can be potentially pathogenic. These findings highlight the potential of DNA barcoding as a reliable tool for integrative environmental monitoring, offering insights into the composition of environmental microbiomes. Microbiome monitoring is valuable for the environment and health, and it will be more efficient by integrating DNA analysis with the development of open databases and artificial intelligence. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

23 pages, 4486 KB  
Article
Composition and Occurrence of Airborne Fungi in Two Urbanized Areas of the City of Sofia, Bulgaria
by Margarita Ivanova, Galina Stoyancheva, Vladislava Dishliyska, Jeny Miteva-Staleva, Radoslav Abrashev, Boryana Spasova, Yana Gocheva, Lyudmila Yovchevska, Galina Satchanska, Maria Angelova and Ekaterina Krumova
Appl. Microbiol. 2025, 5(3), 96; https://doi.org/10.3390/applmicrobiol5030096 - 11 Sep 2025
Viewed by 1218
Abstract
Air pollution remains one of the most urgent global challenges, affecting both public health and environmental integrity, with its severity escalating in parallel with industrialization and urban expansion. Defined as the presence of harmful substances in the atmosphere, air pollution poses risks to [...] Read more.
Air pollution remains one of the most urgent global challenges, affecting both public health and environmental integrity, with its severity escalating in parallel with industrialization and urban expansion. Defined as the presence of harmful substances in the atmosphere, air pollution poses risks to human health and disrupts the development of plant and animal life. Urban areas, particularly large cities, frequently exhibit pollutant concentrations that exceed safety thresholds established by the World Health Organization (WHO). This study presents a comprehensive analysis of airborne fungal microbiota in two distinct districts of Sofia, Bulgaria: the highly urbanized city center (Orlov Most) and a less urbanized southwestern area (New Bulgarian University, Ovcha Kupel). Weekly fluctuations in mold spore abundance were monitored, revealing elevated contamination levels on Fridays, likely due to intensified vehicular traffic preceding weekends and public holidays. Taxonomic identification of dominant mold species was conducted using both classical and molecular genetic methods. The isolated fungal strains predominantly belonged to the phylum Ascomycota (80%), with Talaromyces and Alternaria emerging as the most prevalent genera. Additionally, antifungal susceptibility testing indicated that most isolates were sensitive to commonly used antifungal agents, although resistance was observed in two strains of Talaromyces wortmannii. These findings underscore the significance of fungal bioaerosols in urban air quality assessments and highlight the need for targeted monitoring and mitigation strategies. Full article
Show Figures

Figure 1

19 pages, 2861 KB  
Article
Airborne Hirst Volumetric Sampling Gives an Insight into Atmospheric Dispersion of Pollen and Fungal Spores
by Branko Sikoparija, Slobodan Birgermajer, Bojana Ivosevic, Vasko Sazdovski, Pia Viuf Ørby, Mathilde Kloster and Ulrich Gosewinkel
Atmosphere 2025, 16(9), 1060; https://doi.org/10.3390/atmos16091060 - 9 Sep 2025
Viewed by 853
Abstract
The volumetric Hirst method is considered a golden standard in aerobiology for determining particle number concentrations of bioaerosols. Using Hirst-type pollen and spore traps on mobile platforms (i.e., aircraft, cars, motorbikes, bicycles or carried by pedestrians) is anticipated to significantly enhance the spatial [...] Read more.
The volumetric Hirst method is considered a golden standard in aerobiology for determining particle number concentrations of bioaerosols. Using Hirst-type pollen and spore traps on mobile platforms (i.e., aircraft, cars, motorbikes, bicycles or carried by pedestrians) is anticipated to significantly enhance the spatial and temporal granularity of data for bioaerosol monitoring. Mobile sampling promises to enhance our understanding of bioaerosol dynamics, ecological interactions and the impact of human activities on airborne biological particles. In this article, we present the design and test of an airborne Hirst-type volumetric sampler. We followed a structured approach and incorporated the fundamental principles of the original design, while optimizing for size, weight, power and cost. Our portable Hirst-type volumetric sampler (FlyHirst) was attached to an ultralight aircraft, together with complementing instrumentation, and was tested for collection of atmospheric concentrations of pollen, fungal spores and hyphae. By linking the temporal resolution of the samples with the spatial position of the aircraft, using flight time, we calculated the spatial resolution of our measurements in 3D. In six summer flights over Denmark, our study revealed that the diversity of the recorded spores corresponded to the seasonal expectance. Urtica pollen was recorded up to 1300 m above ground (a.g.l.), and fungal spores up to 2100 m a.g.l. We suggest that, based on this proof-of-concept, FlyHirst can be applied on other mobile platforms or as a personal sampler. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

33 pages, 4232 KB  
Review
Toward Health-Oriented Indoor Air Quality in Sports Facilities: A Narrative Review of Pollutant Dynamics, Smart Control Strategies, and Energy-Efficient Solutions
by Xueli Cao, Haizhou Fang and Xiaolei Yuan
Buildings 2025, 15(17), 3168; https://doi.org/10.3390/buildings15173168 - 3 Sep 2025
Viewed by 1416
Abstract
Indoor sports facilities face distinctive indoor air quality (IAQ) challenges due to high occupant density, elevated metabolic emissions, and diverse pollutant sources associated with physical activity. This review presents a narrative synthesis of multidisciplinary evidence concerning IAQ in sports environments. It explores major [...] Read more.
Indoor sports facilities face distinctive indoor air quality (IAQ) challenges due to high occupant density, elevated metabolic emissions, and diverse pollutant sources associated with physical activity. This review presents a narrative synthesis of multidisciplinary evidence concerning IAQ in sports environments. It explores major pollutant categories, including carbon dioxide (CO2), particulate matter (PM), volatile organic compounds (VOCs), and airborne microbial agents, highlighting their sources, behavior during exercise, and associated health risks. Research shows that physical activity can increase PM concentrations by up to 300%, and CO2 levels frequently exceed 1000 ppm in inadequately ventilated spaces. The presence of semi-volatile organics and bioaerosols further complicates pollutant dynamics, especially in humid and densely occupied areas. Measurement technologies such as optical sensors, chromatographic methods, and molecular techniques are reviewed and compared for their applicability to dynamic indoor settings. Existing IAQ standards across China, the USA, the EU, the UK, and WHO are examined, revealing a lack of activity-specific thresholds and insufficient responsiveness to real-time conditions. Mitigation strategies (e.g., including demand-controlled ventilation, use of low-emission materials, liquid chalk substitutes, and integrated HEPA-UVGI purification systems) are evaluated, many demonstrating pollutant removal efficiencies over 80%. The integration of intelligent building management systems is emphasized for enabling real-time monitoring and adaptive control. This review concludes by identifying research priorities, including the development of activity-sensitive IAQ control frameworks and long-term health impact assessments for athletes and vulnerable users. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 1262 KB  
Review
Aerobiology of Respiratory Infectious Viruses: Recent Paradoxes, Mechanistic Insights, and Future Perspectives
by Kavita Ghosal and Atin Adhikari
Aerobiology 2025, 3(3), 7; https://doi.org/10.3390/aerobiology3030007 - 25 Aug 2025
Viewed by 1448
Abstract
Since the emergence of SARS-CoV-2, the interplay of human behavior, environmental factors, viral evolution, and public health interventions has resulted in unexpected changes in the timing, intensity, and geography of respiratory virus outbreaks. For example, respiratory syncytial viruses (RSV) exhibited a surge during [...] Read more.
Since the emergence of SARS-CoV-2, the interplay of human behavior, environmental factors, viral evolution, and public health interventions has resulted in unexpected changes in the timing, intensity, and geography of respiratory virus outbreaks. For example, respiratory syncytial viruses (RSV) exhibited a surge during atypical summer months in several countries. Influenza, on the other hand, nearly vanished in the early years of the pandemic, but returned with unusual strength and altered seasonal patterns. Concurrently, new variants of concern in coronaviruses have demonstrated increased airborne transmissibility, greater resilience to environmental conditions, and the ability to evade both natural and vaccine-induced immunity. In this review article, we have synthesized the current understanding of the aerobiology of respiratory infectious viruses, with a particular emphasis on the paradoxical trends observed in recent years. We examined various aspects, including viral morphology and environmental survivability, shifts in seasonality, the drivers of mutation and resistance, and the impact of environmental and climatic factors. Key issues we explored include viral morphology adaptation in response to airborne selective pressures and climate variability influence on the ecology of airborne viruses. Lastly, we investigated future risks and proposed an interdisciplinary framework for monitoring and mitigating airborne viral threats in an ever-changing world. Full article
Show Figures

Figure 1

17 pages, 473 KB  
Review
Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities
by Katarzyna Kauch, Ewa Brągoszewska and Anna Mainka
Appl. Sci. 2025, 15(16), 8976; https://doi.org/10.3390/app15168976 - 14 Aug 2025
Viewed by 2016
Abstract
Exposure to microorganisms can significantly impact well-being and, more importantly, human health. A frequently overlooked aspect of indoor air quality (IAQ) research is the risk posed by harmful biological agents transported through the air in the form of biological aerosols. Given that healthcare [...] Read more.
Exposure to microorganisms can significantly impact well-being and, more importantly, human health. A frequently overlooked aspect of indoor air quality (IAQ) research is the risk posed by harmful biological agents transported through the air in the form of biological aerosols. Given that healthcare facilities create environments with an increased risk of infection transmission, monitoring IAQ and reducing microbiological contamination have become global public health challenges. This paper presents a literature review, focusing on the current state of knowledge regarding microbiological air quality in healthcare settings. The analysis confirms that Escherichia coli and Staphylococcus aureus are among the most prevalent airborne pathogens in healthcare facilities. The review also underlines the necessity for harmonized guidelines and integrated air quality management strategies to reduce microbial contamination effectively. Finally, the review compiles data on microorganism concentration levels and influencing factors. The present study highlights that implementing standardized monitoring and effective air filtration and disinfection methods is essential to improving microbiological air quality and enhancing patient safety. The sources analyzed in this review were collected from databases such as PubMed, ScienceDirect, ResearchGate, and Web of Science, considering only English-language publications. The studies cited were conducted in multiple countries across different regions, providing a comprehensive global perspective on the issue. Full article
Show Figures

Figure 1

12 pages, 1078 KB  
Article
Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission
by Elizabeth A. Klug, Danielle N. Rivera, Vicki L. Herrera, Ashley R. Ravnholdt, Daniel N. Ackerman, Yangsheng Yu, Chunyan Ye, Steven B. Bradfute, St. Patrick Reid and Joshua L. Santarpia
Pathogens 2025, 14(8), 750; https://doi.org/10.3390/pathogens14080750 - 30 Jul 2025
Viewed by 1188
Abstract
Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (Peromyscus maniculatus). It is similar to other viruses that have environmental [...] Read more.
Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (Peromyscus maniculatus). It is similar to other viruses that have environmental transmission routes rather than a person-to-person transmission route, such as avian influenza (e.g., H5N1) and Lassa fever. Despite the lack of person-to-person transmission, these viruses cause a significant public health and economic burden. However, due to the lack of targeted pharmaceutical preventatives and therapeutics, the recommended approach to prevent SNV infections is to avoid locations that have a combination of low foot traffic, receive minimal natural sunlight, and where P. maniculatus may be found nesting. Consequently, gaining insight into the SNV bioaerosol decay profile is fundamental to the prevention of SNV infections. The Biological Aerosol Reaction Chamber (Bio-ARC) is a flow-through system designed to rapidly expose bioaerosols to environmental conditions (ozone, simulated solar radiation (SSR), humidity, and other gas phase species at stable temperatures) and determine the sensitivity of those particles to simulated ambient conditions. Using this system, we examined the bioaerosol stability of SNV. The virus was found to be susceptible to both simulated solar radiation and ozone under the tested conditions. Comparisons of decay between the virus aerosolized in residual media and in a mouse bedding matrix showed similar results. This study indicates that SNV aerosol particles are susceptible to inactivation by solar radiation and ozone, both of which could be implemented as effective control measures to prevent disease in locations where SNV is endemic. Full article
(This article belongs to the Special Issue Airborne Transmission of Pathogens)
Show Figures

Figure 1

15 pages, 2966 KB  
Article
A Microfluidic Chip-Based Integrated Device Combining Aerosol Sampling and LAMP–CRISPR Detection for Airborne Virus Surveillance
by Anlan Zhang, Yuqing Chang, Wen Li, Yuanbao Zhang, Yuqian Wang, Haohan Xie, Tao Zuo, Yu Zhang, Jiyu Xi, Xin Wu, Zewen Wei and Rui Chen
Biosensors 2025, 15(8), 475; https://doi.org/10.3390/bios15080475 - 23 Jul 2025
Viewed by 3250
Abstract
Detecting airborne viruses using an integrated aerosol sampling detection device is of great significance in epidemic prevention and control. Most of the applicable aerosol samplers have a flow rate of less than 1000 L/min, which is insufficient for application in large public spaces. [...] Read more.
Detecting airborne viruses using an integrated aerosol sampling detection device is of great significance in epidemic prevention and control. Most of the applicable aerosol samplers have a flow rate of less than 1000 L/min, which is insufficient for application in large public spaces. Recent research, on the other hand, has revealed the advantages of microfluidic chip-based LAMP–CRISPR in airborne virus detection; however, this promising detection method has yet to be integrated with an aerosol sampler. Herein, we present an aerosol sampling and microfluidic chip-based detection (ASMD) device that couples a high-flow-rate aerosol sampling (HFAS) system with a microfluidic LAMP–CRISPR detection (MLCD) chip for surveilling airborne viruses, as represented by SARS-CoV-2. The HFAS system achieved a 6912 L/min flow rate while retaining a satisfactory collection efficiency, and achieved an enrichment ratio of 1.93 × 107 that facilitated subsequent detection by the MLCD chip. The MLCD chip integrates the whole LAMP–CRISPR procedure into a single chip and is compatible with the HFAS system. Environmental detection experiments show the feasibility of the ASMD device for aerosol sampling and detection. Our ASMD device is a promising tool for large space aerosol detection for airborne virus surveillance. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

Back to TopTop