Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition
Abstract
:1. Introduction
2. Methods and Materials
2.1. Experiments
2.2. Characterization
3. Discussion and Results
- -
- Increased resistance: A thicker deposited layer increased the electrical resistance, reducing particle mobility.
- -
- Electrostatic repulsion: A high charge density in the coating may have led to repulsion between incoming particles.
- -
- Limited particle availability: The concentration of suspended particles in the bath decreased over time.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niihara, K.; Kim, B.S.; Nakayama, T.; Kusunose, T.; Nomoto, T.; Hikasa, A.; Sekino, T. Fabrication of Complex-Shaped Alumina/Nickel Nanocomposites by Gelcasting Process. J. Eur. Ceram. Soc. 2004, 24, 3419–3425. [Google Scholar] [CrossRef]
- Lee, S.J.; Chun, S.Y.; Lee, C.H.; Yoon, Y.S. Fabrication of Nanosized Alumina Powders by a Simple Polymer Solution Route. J. Nanosci. Nanotechnol. 2006, 6, 3633–3636. [Google Scholar] [CrossRef] [PubMed]
- Shchegolkov, A.V.; Lipkin, M.S.; Shchegolkov, A.V. Preparation of WO3 Films on Titanium and Graphite Foil for Fuel Cell and Supercapacitor Applications by Electrochemical (Cathodic) Deposition Method. Russ. J. Gen. Chem. 2022, 92, 1161–1167. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, M.; Cai, Z.; Sun, N.; Liu, F.; Du, B.; Zhang, X.; Ling, Z. Effect of Annealing on the Microwave-Absorption Properties of Ni/Al2O3 Nanocomposites. Acta Metall. Sin. 2013, 26, 385–389. [Google Scholar] [CrossRef]
- Karthik, R.; Mani, R.; Manikandan, P. Tribological Studies of Ni-SiC and Ni-Al2O3 Composite Coatings by Pulsed Electrodeposition. Mater. Today Proc. 2020, 37, 701–706. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, H.; Kumar, S. Tribological Performance of Thermally Sprayed Ni-Cr2O3 and Ni-Al2O3 coatings on Pipeline Steel Using Taguchi’s Approach. Mater. Today Proc. 2020, 41, 976–981. [Google Scholar] [CrossRef]
- Sun, Y.; Flis-Kabulska, I.; Flis, J. Corrosion Behaviour of Sediment Electro-Codeposited Ni-Al2O3 Composite Coatings. Mater. Chem. Phys. 2014, 145, 476–483. [Google Scholar] [CrossRef]
- Noorbakhsh Nezhad, A.H.; Mohammadi Zahrani, E.; Alfantazi, A.M. Erosion-Corrosion of Electrodeposited Superhydrophobic Ni-Al2O3 Nanocomposite Coatings under Jet Saline-Sand Slurry Impingement. Corros. Sci. 2022, 197, 110095. [Google Scholar] [CrossRef]
- Yetim, T.; Turalioğlu, K.; Taftali, M.; Tekdir, H.; Kovaci, H.; Yetim, A.F. Synthesis and Characterization of Wear and Corrosion Resistant Ni-Doped Al2O3 Nanocomposite Ceramic Coatings by Sol-Gel Method. Surf. Coatings Technol. 2022, 444, 128659. [Google Scholar] [CrossRef]
- Chen, J. Characteristic Of Ni-Al2O3 Nanocomposition Coatings. Procedia Eng. 2011, 15, 4414–4418. [Google Scholar] [CrossRef]
- Banthuek, S.; Suriwong, T.; Nunocha, P.; Andemeskel, A. Application of Ni-Al2O3 Cermet Coating on Aluminium Fin as the Solar Absorber in Evacuated Tube Collector (ETC). Mater. Today Proc. 2018, 5, 14793–14798. [Google Scholar] [CrossRef]
- Chevapruk, T.; Chomcharoen, N.; Techapiesancharoenkij, R.; Kumnorkaew, P.; Muangnapoh, T.; Surawathanawises, K. Solution-Based Ni-Al2O3 Solar Selective Coating Using Convective Deposition. Mater. Today Proc. 2020, 23, 745–751. [Google Scholar] [CrossRef]
- Li, G.J.; Huang, X.X.; Guo, J.K. Fabrication, Microstructure and Mechanical Properties of Al 2O3/Ni Nanocomposites by a Chemical Method. Mater. Res. Bull. 2003, 38, 1591–1600. [Google Scholar] [CrossRef]
- Ma, C.Y.; Zhao, D.Q.; Xia, F.F.; Xia, H.; Williams, T.; Xing, H.Y. Ultrasonic-Assisted Electrodeposition of Ni-Al2O3 Nanocomposites at Various Ultrasonic Powers. Ceram. Int. 2020, 46, 6115–6123. [Google Scholar] [CrossRef]
- Pradeep, D.G.; Sharath, B.N.; Afzal, A.; Ahmed Ali Baig, M.; Shanmugasundaram, M. Study on Scratch Behavior of Ni-Al2O3 coating Composition on Al-2219 Substrate by Electro Deposited Technique. Mater. Today Proc. 2021, 46, 8716–8722. [Google Scholar] [CrossRef]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I.; Mathad, S. Comparative Study on Ni and Ni-α-Al2O3Nano Composite Coating on Al6061 Substrate Material. Mater. Today Proc. 2020, 24, 975–982. [Google Scholar] [CrossRef]
- Sathiaraj, S.; Thangaraj, R.; Agnihotri, P. High Absorptance and Low Emittance AR-Coated Ni-Al2O3 Solar Absorbers. J. Phys. D Appl. Phys. 1990, 23, 250. [Google Scholar] [CrossRef]
- Boström, T.; Wäckelgård, E.; Westin, G. Solution-Chemical Derived Nickel-Alumina Coatings for Thermal Solar Absorbers. Sol. Energy 2003, 74, 497–503. [Google Scholar] [CrossRef]
- Feng, T.; Zheng, W.; Chen, W.; Shi, Y.; Fu, Y.Q. Enhanced Interfacial Wettability and Mechanical Properties of Ni@Al2O3/Cu Ceramic Matrix Composites Using Spark Plasma Sintering of Ni Coated Al2O3 Powders. Vacuum 2021, 184, 109938. [Google Scholar] [CrossRef]
- Valette, S.; Bernardie, R.; Absi, J.; Lefort, P. Elaboration and Characterisation of Plasma Sprayed Alumina Coatings on Nickel with Nickel Oxide Interlayer. Surf. Coatings Technol. 2021, 416, 127159. [Google Scholar] [CrossRef]
- Yazdani, A.; Isfahani, T. Hardness, Wear Resistance and Bonding Strength of Nano Structured Functionally Graded Ni-Al2O3 Composite Coatings Fabricated by Ball Milling Method. Adv. Powder Technol. 2018, 29, 1306–1316. [Google Scholar] [CrossRef]
- Grewal, H.S.; Singh, H.; Agrawal, A. Microstructural and Mechanical Characterization of Thermal Sprayed Nickel-Alumina Composite Coatings. Surf. Coatings Technol. 2013, 216, 78–92. [Google Scholar] [CrossRef]
- Sevillano, F.; Poza, P.; Múnez, C.J.; Vezzù, S.; Rech, S.; Trentin, A. Cold-Sprayed Ni-Al2O3 Coatings for Applications in Power Generation Industry. J. Therm. Spray Technol. 2013, 22, 772–782. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Wachowski, M.; Miazga, A.; Konopka, K.; Kaszuwara, W. Characterization of Al2O3/Ni Composites Manufactured via CSC Technique in Magnetic Field. Compos. Part B Eng. 2019, 156, 113–120. [Google Scholar] [CrossRef]
- Ferrari, B.; Sánchez-Herencia, A.J.; Moreno, R. Nickel-Alumina Graded Coatings Obtained by Dipping and EPD on Nickel Substrates. J. Eur. Ceram. Soc. 2006, 26, 2205–2212. [Google Scholar] [CrossRef]
- Babadi, P.; Sadreddini, S.; Mohsenifar, F.; Roshani, M. The Influence of Electrophoretic Potential on Ni—Al2O3 Nano-Composite Coating. Prot. Met. Phys. Chem. Surf. 2016, 52, 249–253. [Google Scholar] [CrossRef]
- Pikalova, E.Y.; Kalinina, E.G. Electrophoretic Deposition in the Solid Oxide Fuel Cell Technology: Fundamentals and Recent Advances. Renew. Sustain. Energy Rev. 2019, 116, 109440. [Google Scholar] [CrossRef]
- Corni, I.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic Deposition: From Traditional Ceramics to Nanotechnology. J. Eur. Ceram. Soc. 2008, 28, 1353–1367. [Google Scholar] [CrossRef]
- Hu, S.; Li, W.; Finklea, H.; Liu, X. A Review of Electrophoretic Deposition of Metal Oxides and Its Application in Solid Oxide Fuel Cells. Adv. Colloid Interface Sci. 2020, 276, 102102. [Google Scholar] [CrossRef]
- Rezaei, R.; Moradi, G. Study of the Performance of Dry Methane Reforming in a Microchannel Reactor Using Sputtered Ni/Al2O3 Coating on Stainless Steel. Int. J. Hydrogen Energy 2018, 43, 21374–21385. [Google Scholar] [CrossRef]
- Stephen, T.; Thangaraj, R.; Sharbaty, H.A.L.; Agnihotri, P. Optical properties of selectively absorbing r.f. sputtered Ni-Al2O3 composite films. Thin Solid Films 1991, 195, 33–42. [Google Scholar] [CrossRef]
- Yazdani, A.; Isfahani, T. A Facile Method for Fabrication of Nano-Structured Ni-Al2O3 Graded Coatings: Structural Characterization. Trans. Nonferrous Met. Soc. China 2018, 28, 77–87. [Google Scholar] [CrossRef]
- Winnicki, M.; Kozerski, S.; Malachowska, A.; Pawlowski, L.; Winnicki, M.; Kozerski, S.; Malachowska, A.; Pawlowski, L.; Optimization, M.R. Optimization of Ceramic Content in Nickel–Alumina Composite Coatings Obtained by Low Pressure Cold Spraying. Surf. Coat. Technol. 2021, 405, 126732. [Google Scholar] [CrossRef]
- Feng, Q.; Li, T.; Teng, H.; Zhang, X.; Zhang, Y.; Liu, C.; Jin, J. Investigation on the Corrosion and Oxidation Resistance of Ni- Al2O3 Nano-Composite Coatings Prepared by Sediment Co-Deposition. Surf. Coatings Technol. 2008, 202, 4137–4144. [Google Scholar] [CrossRef]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I. Multi-Objective Optimization of Electrodeposition of Ni–Al2O3Nano Composite Coating on Al6061 Substrate. Trans. Indian Inst. Met. 2018, 71, 2119–2132. [Google Scholar] [CrossRef]
- Nagarajan, N.; Nicholson, P.S. Nickel-Alumina Functionally Graded Materials by Electrophoretic Deposition. J. Am. Ceram. Soc. 2004, 87, 2053–2057. [Google Scholar] [CrossRef]
- Kumar, A.; Das, A.K. Fabrication of Al-Ni-Al2O3 Metal Matrix Composite Coating on AA1100 Wrought Aluminium Alloy by Gas Tungsten Arc (GTA) Coating Technique Fabrication of Al-Ni-Al2O3 Metal Matrix Composite Coating on AA1100 Wrought Aluminium Alloy by Gas Tungsten Arc. Eng. Res. Express 2022, 4, 035041. [Google Scholar] [CrossRef]
- Pandiyarajan, S.; Manickaraj, S.S.M.; Liao, A.H.; Ramachandran, A.; Lee, K.Y.; Chuang, H.C. Recovery of Al2O3 from Hazardous Al Waste as a Reinforcement Particle for High-Performance Ni/Al2O3 Corrosion Resistance Coating via Ultrasonic-Aided Supercritical-CO2 Electrodeposition. Chemosphere 2023, 313, 137626. [Google Scholar] [CrossRef]
- Sharma, A.; Biswas, P. The Utilization of Metal-Organic Frameworks (MOFs) Derived Nickel-Alumina Catalyst for the Production of Hydrogen-Rich Syn-Gas via Methane Tri-Reforming: An Innovative Approach for Attaining Enhanced Stability. Int. J. Hydrogen Energy 2024, 77, 1133–1146. [Google Scholar] [CrossRef]
- Gheorghies, C.; Carac, G.; Stasi, I.V.; Dunarea, S.R.-G. Preparation and Structural Characterization of Nickel/Alumina Nano-Particles Composite Coatings. J. Optoelectron. Adv. Mater. 2006, 8, 1234–1237. [Google Scholar]
- Sasi, A.; Mondal, M.; Dayal, S.; Kumar, S. Electro Deposition of Nickel-Alumina Composite Coating. Mater. Today Proc. 2015, 2, 3042–3048. [Google Scholar] [CrossRef]
- Bensebaa, F.; Di Domenicantonio, D.; Scoles, L.; Kingston, D.; Mercier, P.; Marshall, G. Alternative Coating Technologies for Metal-Ceramic Nanocomposite Films: Potential Application for Solar Thermal Absorber. Int. J. Low-Carbon Technol. 2016, 11, 370–374. [Google Scholar] [CrossRef]
- Lekka, M.; Lanzutti, A.; Casagrande, A.; de Leitenburg, C.; Bonora, P.L.; Fedrizzi, L. Room and High Temperature Wear Behaviour of Ni Matrix Micro- and Nano-SiC Composite Electrodeposits. Surf. Coatings Technol. 2012, 206, 3658–3665. [Google Scholar] [CrossRef]
- Akhtar, K.; Khan, Z.U.; Gul, M.; Zubair, N.; Shah, S.S.A. Electrodeposition and Characterization of Ni-Al2O3Nanocomposite Coatings on Steel. J. Mater. Eng. Perform. 2018, 27, 2827–2837. [Google Scholar] [CrossRef]
- Azizi-Nour, J.; Nasirpouri, F. Exploiting Magnetic Sediment Co-Electrodeposition Mechanism in Ni- Al2O3 Nanocomposite Coatings. J. Electroanal. Chem. 2022, 907, 116052. [Google Scholar] [CrossRef]
- Irshad, H.M.; Hakeem, A.S.; Ahmed, B.A.; Ali, S.; Ali, S.; Ali, S.; Ehsan, M.A.; Laoui, T. Effect of Ni Content and Al2O3Particle Size on the Thermal and Mechanical Properties of Al2O3/Ni Composites Prepared by Spark Plasma Sintering. Int. J. Refract. Met. Hard Mater. 2018, 76, 25–32. [Google Scholar] [CrossRef]
- Feng, Q.; Li, T.; Yue, H.; Qi, K.; Bai, F.; Jin, J. Preparation and Characterization of Nickel Nano-Al2O3 Composite Coatings by Sediment Co-Deposition. Appl. Surf. Sci. 2008, 254, 2262–2268. [Google Scholar] [CrossRef]
- Huang, X.; Xiong, Y.; Liu, L.; Tian, Y.; Liu, G. Investigation on Nickel/Alumina-Nanoparticles Co-Deposition. Microsyst. Technol. 2009, 15, 723–729. [Google Scholar] [CrossRef]
- Wazwaz, A.; Al-Salaymeh, A. Theoretical and Measured Optical Properties of Ni- Al2O3 over Al Substrate Selective Absorber. Sustain. Cities Soc. 2015, 16, 13–23. [Google Scholar] [CrossRef]
- Galione, P.A.; Baroni, A.L.; Ramos-Barrado, J.R.; Leinen, D.; Martín, F.; Marotti, R.E.; Dalchiele, E.A. Origin of Solar Thermal Selectivity and Interference Effects in Nickel-Alumina Nanostructured Films. Surf. Coatings Technol. 2010, 204, 2197–2201. [Google Scholar] [CrossRef]
Coating and Method | Advantages | Limitations |
---|---|---|
Nickel nano-particles embedded in a dielectric matrix of alumina. Spin-coating. | Uniform thin films. High reproducibility. Simple and fast process. Cost-effective for small-scale production. Good control over film thickness. Applicable to various materials. | Material waste. Limited to flat and small substrates. Solvent evaporation effects. Scalability issues [18]. |
Ni-Al2O3 composite film. Magnetron sputtering. | Dense and adherent coatings, high purity, fine microstructure. High control over thickness and composition. Used in microelectronics. | Expensive equipment. Requires vacuum environment and high-cost equipment. Low deposition rate [30,31]. |
Nano-structured Ni-Al2O3 composite coatings. Planetary ball-milling. | Versatile applications. Customizable parameters. Batch processing. Controllable atmosphere. | High wear and contamination. High energy consumption. Small batch processing. Agglomeration of fine powders [32]. |
Nickel–alumina composite coatings. Thermal spraying. | High deposition rates, suitable for large surfaces. Allows for thick coatings with good wear resistance and high hardness. | Requires expensive equipment. Some processes induce thermal stress, affecting adhesion [22,33]. |
Nickel–alumina composite coatings. Cold-spraying. | ||
Ni-Al2O3 nano composite coating. Electrodeposition. | Good adhesion, cost-effective, scalable for industrial applications. | Particle dispersion in the electrolyte can be challenging, possible agglomeration. Requires optimization of bath composition and deposition parameters, need many chemicals [19,34]. |
Electrophoretic deposition (EPD), used in our study. | Uniform coating, precise control over composition, simple setup, and suitable for complex shapes. Eco friendly process. | Adhesion strength depends on substrate preparation [28]. |
Trial | Mean Hardness (HV) | Standard Deviation | Reproducibility (%) | Stability (%) |
---|---|---|---|---|
Ni25% 1st | 375 | 6.89 | - | - |
Ni25% 2nd | 364 | 6.5 | 97.07 | 94.34 |
Ni25% 3rd | 371 | 6.08 | 98.08 | 93.54 |
Ni50% 1st | 420 | 7.96 | - | - |
Ni50% 2nd | 418 | 7.38 | 99.5 | 92.71 |
Ni50% 3rd | 424 | 6.78 | 98.56 | 91.87 |
Ni75% 1st | 450 | 8.6 | - | - |
Ni75% 2nd | 445 | 7.18 | 98.89 | 83.49 |
Ni75% 3rd | 455 | 6.81 | 97.75 | 94.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamoudi, S.; Bezzi, N.; Bensebaa, F.; Delaporte, P. Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition. J. Compos. Sci. 2025, 9, 122. https://doi.org/10.3390/jcs9030122
Hamoudi S, Bezzi N, Bensebaa F, Delaporte P. Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition. Journal of Composites Science. 2025; 9(3):122. https://doi.org/10.3390/jcs9030122
Chicago/Turabian StyleHamoudi, Souaad, Nacer Bezzi, Farid Bensebaa, and Philippe Delaporte. 2025. "Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition" Journal of Composites Science 9, no. 3: 122. https://doi.org/10.3390/jcs9030122
APA StyleHamoudi, S., Bezzi, N., Bensebaa, F., & Delaporte, P. (2025). Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition. Journal of Composites Science, 9(3), 122. https://doi.org/10.3390/jcs9030122