Improving Electrochemical Performance of Cobalt Hexacyanoferrate as Magnesium Ion Battery Cathode Material by Nickel Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
2.3. Electrochemical Measurement
3. Results
3.1. Structural Characterization of CoHCF and Ni-Doped CoHCF
3.2. Electrochemical Properties of CoHCF and Ni-Doped CoHCF
4. Conclusions
- Inhibit the lattice expansion of CoHCF;
- Enhance the diffusion capacity of magnesium ions in CoHCF;
- Increase the REDOX potential of Co in CoHCF.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gregory, T.D.; Hoffman, R.J.; Winterton, R.C. Nonaqueous electrochemistry of magnesium—Applications to energy-storage. J. Electrochem. Soc. 1990, 137, 775–780. [Google Scholar] [CrossRef]
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727. [Google Scholar] [CrossRef]
- Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 1999, 466, 203–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, H.; Wei, W.; Ma, J.; Chen, L.; Li, C.C. Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 2019, 20, 118–138. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, S.; Wu, Y.; Li, Y. Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review. Energy Storage Mater. 2023, 39, 2205050. [Google Scholar] [CrossRef]
- Mizanuzzaman, M.; Chowdhury, M.A.; Khandaker, T.; Islam, M.S.; Kowser, M.A.; Islam, M.M. Advancements in cathode materials for high-performance rechargeable magnesium-ion batteries. J. Energy Storage 2025, 118, 116213. [Google Scholar] [CrossRef]
- Guo, W.; Hanaor, D.A.H.; Kober, D.; Wang, J.; Bekheet, M.F.; Gurlo, A. Rechargeable Magnesium Ion Batteries Based on Nanostructured Tungsten Disulfide Cathodes. Batteries 2022, 8, 116. [Google Scholar] [CrossRef]
- Caggiu, L.; Enzo, S.; Stievano, L.; Berthelot, R.; Gerbaldi, C.; Falco, M.; Garroni, S.; Mulas, G. Solvent-Free Mechanochemical Approach towards Thiospinel MgCr2S4 as a Potential Electrode for Post-Lithium Ion Batteries. Batteries 2020, 6, 43. [Google Scholar] [CrossRef]
- Sun, X.; Bonnick, P.; Nazar, L.F. Layered TiS2 Positive Electrode for Mg Batteries. ACS Energy Lett. 2016, 1, 297–301. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Zhu, L.; Wang, X.; Dong, X.; Zeng, W.; Wang, J.; Pan, F. Enhancing Mg2+ and Mg2+/Li+ Storage by Introducing Active Defect Sites and Edge Surfaces in MoSe2. ChemElectroChem 2021, 8, 4252–4260. [Google Scholar] [CrossRef]
- Kim, J.-S.; Chang, W.-S.; Kim, R.-H.; Kim, D.-Y.; Han, D.-W.; Lee, K.-H.; Lee, S.-S.; Doo, S.-G. High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power Sources 2015, 273, 210–215. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Pant, R.; Gofer, Y.; Aurbach, D. Anion Effects on Cathode Electrochemical Activity in Rechargeable Magnesium Batteries: A Case Study of V2O5. ACS Energy Lett. 2018, 4, 209–214. [Google Scholar] [CrossRef]
- Nguyen, D.-T.; Prabhakaran, V.; Kovarik, L.; Alexander, G.; Cabana, J.; Connell, J.G.; Hu, J.Z.; Shutthanandan, V.; Sivakumar, B.M.; Mueller, K.T.; et al. Structural and chemical evolutions of a magnesium vanadium oxide cathode under electrochemical cycling in magnesium batteries. Nano Energy 2024, 128, 109939. [Google Scholar] [CrossRef]
- Kwon, N.H.; Lee, K.-G.; Kim, H.K.; Hwang, S.-J. MnO2-based nanostructured materials for various energy applications. Mater. Chem. Front. 2021, 5, 3549–3575. [Google Scholar] [CrossRef]
- Li, X.; Suo, C.; Zhang, B.; Hu, B.; Huang, J.; Zhao, Y.; Zhang, W.; Ji, X.; Li, W. Free water based high capacity aqueous magnesium ion battery with nano-amorphized cathodic V6O13@Mg-MnO2 in the presence of Cl. Chem. Eng. J. 2025, 510, 161725. [Google Scholar] [CrossRef]
- Perez-Vicente, C.; Rubio, S.; Ruiz, R.; Zuo, W.; Liang, Z.; Yang, Y.; Ortiz, G.F. Olivine-Type MgMn0.5Zn0.5SiO4 Cathode for Mg-Batteries: Experimental Studies and First Principles Calculations. Small 2023, 19, e2206010. [Google Scholar] [CrossRef]
- Torres, A.; Arroyo-de Dompablo, M.E. Comparative Investigation of MgMnSiO4 and Olivine-Type MgMnSiS4 as Cathode Materials for Mg Batteries. J. Phys. Chem. C 2018, 122, 9356–9362. [Google Scholar] [CrossRef]
- Romio, M.; Surace, Y.; Mautner, A.; Hamid, R.; Jahn, M.; Cupid, D.M.; Abrahams, I. A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2. Batteries 2023, 9, 342. [Google Scholar] [CrossRef]
- Mustafa, M.; Rani, M.S.A.; Adnan, S.B.R.S.; Salleh, F.M.; Mohamed, N.S. Characteristics of new Mg0.5(Zr1-xSnx)2(PO4)3 NASICON structured compound as solid electrolytes. Ceram. Int. 2020, 46, 28145–28155. [Google Scholar] [CrossRef]
- Mizuno, Y.; Okubo, M.; Hosono, E.; Kudo, T.; Oh-ishi, K.; Okazawa, A.; Kojima, N.; Kurono, R.; Nishimura, S.-i.; Yamada, A. Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 2013, 1, 13055–13059. [Google Scholar] [CrossRef]
- Lipson, A.L.; Han, S.-D.; Kim, S.; Pan, B.; Sa, N.; Liao, C.; Fister, T.T.; Burrell, A.K.; Vaughey, J.T.; Ingram, B.J. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J. Power Sources 2016, 325, 646–652. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.; Zhang, L.; Zhai, Y.; Dong, S. Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue). Chem. Sci. 2016, 7, 6721–6727. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.S.; Hyoung, J.; Jang, M.; Lee, H.; Hong, S.-T. Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries. J. Power Sources 2017, 363, 269–276. [Google Scholar] [CrossRef]
- Marzak, P.; Kosiahn, M.; Yun, J.; Bandarenka, A.S. Intercalation of Mg2+ into electrodeposited Prussian Blue Analogue thin films from aqueous electrolytes. Electrochim. Acta 2019, 307, 157–163. [Google Scholar] [CrossRef]
- Shrivastava, A.; Liu, S.; Smith, K.C. Linking capacity loss and retention of nickel hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions. Phys. Chem. Chem. Phys. 2019, 21, 20177–20188. [Google Scholar] [CrossRef]
- Kuperman, N.; Cairns, A.; Goncher, G.; Solanki, R. Structural water enhanced intercalation of magnesium ions in copper hexacyanoferrate nonaqueous batteries. Electrochim. Acta 2020, 362, 137077. [Google Scholar] [CrossRef]
- Huang, K.; Qu, B.; Shen, X.; Deng, R.; Li, R.; Huang, G.; Tang, A.; Li, Q.; Wang, J.; Pan, F. A Novel Asymmetric Diffusion Path for Superior Ion Dynamic in High-Voltage Mg-Based Hybrid Batteries. Adv. Sci. 2024, 11, e2406451. [Google Scholar] [CrossRef]
- Ling, C.; Chen, J.J.; Mizuno, F. First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius. J. Phys. Chem. C 2013, 117, 21158–21165. [Google Scholar] [CrossRef]
- Chen, J.; Wei, L.; Mahmood, A.; Pei, Z.; Zhou, Z.; Chen, X.; Chen, Y. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Mater. 2020, 25, 585–612. [Google Scholar] [CrossRef]
- Muneer, W.; Khan, M.I.; Shah, S.K.; Ullah, A.; Iqbal, J.; Khan, M.A. Advances in prussian blue analogues: A comprehensive review on synthesis methods and battery applications. Mater. Chem. Phys. 2025, 332, 16. [Google Scholar] [CrossRef]
- Jiang, M.; Hou, Z.; Ren, L.; Zhang, Y.; Wang, J.-G. Prussian blue and its analogues for aqueous energy storage: From fundamentals to advanced devices. Energy Storage Mater. 2022, 50, 618–640. [Google Scholar] [CrossRef]
- Wang, B.; Han, Y.; Wang, X.; Bahlawane, N.; Pan, H.; Yan, M.; Jiang, Y. Prussian Blue Analogs for Rechargeable Batteries. iScience 2018, 3, 110–133. [Google Scholar] [CrossRef] [PubMed]
- Bie, X.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. J. Power Sources 2018, 378, 322–330. [Google Scholar] [CrossRef]
- Ge, P.; Li, S.; Shuai, H.; Xu, W.; Tian, Y.; Yang, L.; Zou, G.; Hou, H.; Ji, X. Ultrafast Sodium Full Batteries Derived from X-Fe (X = Co, Ni, Mn) Prussian Blue Analogs. Adv. Mater. 2019, 31, e1806092. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, J.; Huang, L.; Ou, M.; Fan, C.; Wei, P.; Peng, J.; Liu, Y.; Qiu, Y.; Sun, X.; et al. Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries. Adv. Energy Mater. 2018, 9, 1803158. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, A.; Zhong, F.; Feng, X.; Chen, W.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 2020, 332, 135533. [Google Scholar] [CrossRef]
- Yu, W.; Wang, K.; Xu, R.; Wu, M.; Liu, C.; Su, X. Sodium-Rich Prussian Blue Analogs Synthesized with Reducing Sodium Salt for Enhanced Rate and Cycling Stability Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2025, 17, 7870–7880. [Google Scholar] [CrossRef]
- Ma, X.-H.; Wei, Y.-Y.; Zhou, J.-F.; Zhou, J.-H.; Zhao, S.-W.; Jia, W.; Dai, J.-M.; Zi, Z.-F. Low-defect Na2Co[Fe(CN)6] synthesized by a facile electrostatic spray assisted coprecipitation method as cathode for sodium-ion batteries. Electrochim. Acta 2018, 272, 44–51. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Zhang, X.; Li, J.; Liu, Y.; Cai, X.; Li, W.; Yu, H.; Yan, L.; Zhang, L.; et al. Cobalt hexacyanoferrate enhanced by common ion effect for aqueous potassium-ion batteries. Appl. Surf. Sci. 2022, 604, 154654. [Google Scholar] [CrossRef]
- Pan, Z.T.; He, Z.H.; Hou, J.F.; Kong, L.B. Designing CoHCF@FeHCF Core-Shell Structures to Enhance the Rate Performance and Cycling Stability of Sodium-Ion Batteries. Small 2023, 19, e2302788. [Google Scholar] [CrossRef]
- Ren, L.; Wang, J.-G.; Liu, H.; Shao, M.; Wei, B. Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochim. Acta 2019, 321, 134671. [Google Scholar] [CrossRef]
- Xia, L.; McCreery, R.L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. J. Electrochem. Soc. 1999, 146, 3696–3701. [Google Scholar] [CrossRef]
- Xu, P.; Wang, G.; Wang, H.; Li, Y.; Miao, C.; Qu, J.; Zhang, Y.; Ren, F.; Cheng, K.; Ye, K.; et al. K2.25Ni0.55Co0.37Fe(CN)6 nanoparticle connected by cross-linked carbon nanotubes conductive skeletons for high-performance energy storage. Chem. Eng. J. 2017, 328, 834–843. [Google Scholar] [CrossRef]
- Jing, M.; Long, K.; Liu, R.; Wang, X.; Wu, T.; Zhu, Y.; Liu, L.; Zhang, S.; Zhang, Y.; Liu, C. One-Step Hydrothermally Synthesized Ni11(HPO3)8(OH)6/Co3(HPO4)2(OH)2 Heterostructure with Enhanced Rate Performance for Hybrid Supercapacitor Applications. Batteries 2024, 10, 339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, P.; Wang, J.; Huang, G.; Wang, J.; Pan, F. Improving Electrochemical Performance of Cobalt Hexacyanoferrate as Magnesium Ion Battery Cathode Material by Nickel Doping. Batteries 2025, 11, 213. https://doi.org/10.3390/batteries11060213
Wang J, Zhang P, Wang J, Huang G, Wang J, Pan F. Improving Electrochemical Performance of Cobalt Hexacyanoferrate as Magnesium Ion Battery Cathode Material by Nickel Doping. Batteries. 2025; 11(6):213. https://doi.org/10.3390/batteries11060213
Chicago/Turabian StyleWang, Jinxing, Peiyang Zhang, Jiaxu Wang, Guangsheng Huang, Jingfeng Wang, and Fusheng Pan. 2025. "Improving Electrochemical Performance of Cobalt Hexacyanoferrate as Magnesium Ion Battery Cathode Material by Nickel Doping" Batteries 11, no. 6: 213. https://doi.org/10.3390/batteries11060213
APA StyleWang, J., Zhang, P., Wang, J., Huang, G., Wang, J., & Pan, F. (2025). Improving Electrochemical Performance of Cobalt Hexacyanoferrate as Magnesium Ion Battery Cathode Material by Nickel Doping. Batteries, 11(6), 213. https://doi.org/10.3390/batteries11060213