Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Physicochemical Analysis
2.4. Monomer Phenol Content
2.5. Antioxidant Activity
2.5.1. DPPH Radical Scavenging System
2.5.2. ABTS Radical Scavenging System
2.5.3. Ferric Ion Reducing Antioxidant Power (FRAP) Method
2.6. Analysis of Volatile Compounds
2.6.1. Identification and Quantification of Volatile Compounds
2.6.2. Evaluation of Key Volatile Substances
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. TPC, TFC, and Antioxidant Activity
3.3. Monomer Phenols
3.4. Analysis of Volatile Compounds
3.5. Comparison of Key Volatile Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Li, Y.; Pan, L.; Abbas, A.; Jiang, Y.; Wang, X. Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging. Postharvest Biol. Technol. 2020, 171, 111320. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Jia, L.; Yu, W.; Wang, D.; Wei, W.; Li, S.; Tian, S.; Wu, D. Rapid and Non-Destructive Detection of Compression Damage of Yellow Peach Using an Electronic Nose and Chemometrics. Sensors 2020, 20, 1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.X.; Liu, C.F.; Wang, R.; Zheng, F.Y.; Wang, J.J.; Niu, C.T.; Li, Q. Optimization of Fermentation Process and Analysis of Aroma Components of Yellow Peach Wine. J. Food Sci. Biotechnol. 2021, 40, 39–49. [Google Scholar]
- Zhang, X.Q.; Lv, Z.Z.; Liu, H.; Yang, W.B.; Jiao, Z.G.; Liu, J.C. Characteristics of peach wines made from different cultivars and evaluation on their suitability for wine brewing. J. Fruit Sci. 2021, 38, 1368–1380. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, P.; Wu, Z. Quality and aroma characteristics of honey peach wines as influenced by different maturity. Int. J. Food Prop. 2020, 23, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, M.; Ren, T.; Wang, J.; Niu, C.; Zheng, F.; Li, Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. LWT 2022, 155, 112993. [Google Scholar] [CrossRef]
- Ruppert, V.; Innerhofer, G.; Voit, J.; Hiden, P.; Siegmund, B. The Impact of the Fermentation Strategy on the Flavour Formation of Ilzer Rose (Malus domestica Borkh.) Apple Wine. Foods 2021, 10, 2348. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yan, Y.; Wang, M.; Wu, Y.; Liu, S.-Q.; Chen, D.; Lu, Y. Effects of enzymatic hydrolysis on the chemical constituents in jujube alcoholic beverage fermented with Torulaspora delbrueckii. LWT 2018, 97, 617–623. [Google Scholar] [CrossRef]
- Urdapilleta, I.; Demarchi, S.; Parr, W.V. Influence of culture on social representation of wines produced by various methods: Natural, organic and conventional. Food Qual. Prefer. 2020, 87, 104034. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Influence of the Presence of Grape Skins during White Wine Alcoholic Fermentation. Agronomy 2021, 11, 452. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Ren, Y.; Wang, X.; Li, H.; Liu, Z.; Yue, T.; Gao, Z. Effect of inoculation method on the quality and nutritional characteristics of low-alcohol kiwi wine. LWT 2022, 156, 113049. [Google Scholar] [CrossRef]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599,912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [Green Version]
- Pham, D.-T.; Ristic, R.; Stockdale, V.J.; Jeffery, D.W.; Tuke, J.; Wilkinson, K. Influence of partial dealcoholization on the composition and sensory properties of Cabernet Sauvignon wines. Food Chem. 2020, 325, 126869. [Google Scholar] [CrossRef] [PubMed]
- Velic, D.; Velic, N.; Klarić, D.A.; Klaric, I.; Tominac, V.P.; Kosmerl, T.; Vidrih, R. The production of fruit wines—A review. Croat. J. Food Sci. Technol. 2018, 10, 279–290. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, L. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT 2006, 39, 1155–1162. [Google Scholar] [CrossRef]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Webber, V.; Dutra, S.V.; Spinelli, F.R.; Marcon, Â.R.; Carnieli, G.J.; Vanderlinde, R. Effect of glutathione addition in sparkling wine. Food Chem. 2014, 159, 391–398. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the Total Free Radical Scavenger Capacity of Vegetable Oils and Oil Fractions Using 2,2-Diphenyl-1-picrylhydrazyl Radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef]
- Marfil, R.; Giménez, R.; Martínez, O.; Bouzas, P.R.; Rufián-Henares, J.A.; Mesías, M.; Cabrera-Vique, C. Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil (Argania spinosa, Skeels). Eur. J. Lipid Sci. Technol. 2011, 113, 886–893. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Karlovits, G.; Dianoczki, C.; Recseg, K.; Szłyk, E. Comparison of Two Analytical Methods for Assessing Antioxidant Capacity of Rapeseed and Olive Oils. J. Am. Oil Chem. Soc. 2007, 85, 141–149. [Google Scholar] [CrossRef]
- Xi, X.; Xin, A.; You, Y.; Huang, W.; Zhan, J. Increased varietal aroma diversity of Marselan wine by mixed fermentation with indigenous non-saccharomyces yeasts. Fermentation 2021, 7, 133. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, X.; Liu, J.; Jia, M.; Blanchard, C.; Zhou, Z. Characterizing the volatile compounds of different sorghum cultivars by both GC-MS and HS-GC-IMS. Food Res. Int. 2020, 140, 109975. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Lamorte, S.A.; Gambuti, A.; Moio, L. Aroma of Aglianico and Uva di Troia grapes by aromatic series. Food Res. Int. 2013, 53, 15–23. [Google Scholar] [CrossRef]
- Liu, S.X.; Laaksonen, O.; Kortesniemi, M.; Kalpio, M.; Yang, B.R. Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Food Chem. 2018, 266, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, S.; Zhang, Y.; Yuan, Y.; Yue, T. Characterization and screening of non-Saccharomyces yeasts used to produce fragrant cider. LWT 2019, 107, 191–198. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Arozarena, I.; Ortiz, J.; Hermosín-Gutiérrez, I.; Urretavizcaya, I.; Salvatierra, S.; Córdova, I.; Marín-Arroyo, M.R.; Noriega, M.J.; Navarro, M. Color, Ellagitannins, Anthocyanins, and Antioxidant Activity of Andean Blackberry (Rubus glaucus Benth.) Wines. J. Agric. Food Chem. 2012, 60, 7463–7473. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compos. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Heinonen, I.M.; Lehtonen, P.J.; Hopia, A.I. Antioxidant Activity of Berry and Fruit Wines and Liquors. J. Agric. Food Chem. 1998, 46, 25–31. [Google Scholar] [CrossRef]
- Ljevar, A.; Ćurko, N.; Tomašević, M.; Radošević, K.; Gaurina Srček, V.; Kovačević Ganić, K. Phenolic composition, antioxidant capacity and in vitro cytotoxicity assessment of fruit wines. Food Technol. Biotechnol. 2016, 54, 145–155. [Google Scholar] [CrossRef]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Cakar, U.; Grozdanic, N.; Petrovic, A.; Pejin, B.; Nastasijevic, B.; Markovic, B.; Dordevic, B. Fruit Wines Inhibitory Activity Against α-Glucosidase. Curr. Pharm. Biotechnol. 2018, 18, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Lakshman, K.; Jayaveera, K.N.; Tripathi, S.M.; Satish, K.V. Estimation of gallic acid, rutin and quercetin in Ter-minalia chebula by HPTLC. Jordan. J. Pharm. Sci. 2010, 3, 63–68. [Google Scholar]
- Massera, A.; Assof, M.; Sari, S.; Ciklic, I.; Mercado, L.; Jofré, V.; Combina, M. Effect of low temperature fermentation on the yeast-derived volatile aroma composition and sensory profile in Merlot wines. LWT 2021, 142, 111069. [Google Scholar] [CrossRef]
- Hu, K.; Jin, G.-J.; Mei, W.-C.; Li, T.; Tao, Y.-S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 2018, 239, 495–501. [Google Scholar] [CrossRef]
- González-Rompinelli, E.M.; Rodríguez-Bencomo, J.J.; García-Ruiz, A.; Sánchez-Patán, F.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control 2013, 33, 440–447. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, J.-Y.; Wei, W.-W.; Xi, W.-P.; Xu, C.-J.; Ferguson, I.; Chen, K. Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. J. Agric. Food Chem. 2010, 58, 6157–6165. [Google Scholar] [CrossRef]
- Shi, F.; Zhang, Q.; Chen, J.; Karimi, H.R. Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature. Abstr. Appl. Anal. 2014, 2014, 512576. [Google Scholar] [CrossRef]
- Yu, H.Y.; Qian, X.H.; Chen, C.; Tian, H.X. Changes of flavor compounds of yellow peach wine during the fermentation process. Sci. Technol. Food Ind. 2018, 39, 87–93. [Google Scholar] [CrossRef]
Physicochemical Indexes | J12 | P12 | PW12 | PW5 |
---|---|---|---|---|
Total acid /(g/L) | 5.12 ± 0.05 a | 5.08 ± 0.09 a | 4.93 ± 0.05 b | 4.93 ± 0.05 b |
pH | 3.30 ± 0.00 c | 3.33 ± 0.00 b | 3.36 ± 0.00 a | 3.33 ± 0.00 b |
Reducing sugar /(g/L) | 0.92 ± 0.03 b | 0.54 ± 0.03 c | 0.63 ± 0.07 c | 39.78 ± 0.09 a |
Alcohol /(v/v) | 12.29 ± 0.01 b | 12.76 ± 0.01 a | 10.95 ± 0.02 c | 5.11 ± 0.01d |
Dry extract /(g/L) | 19.80 ± 0.21 d | 26.58 ± 0.03 a | 21.17 ± 0.19 c | 22.12 ± 0.15 b |
Volatile acid /(g/L) | 0.35 ± 0.02 b | 0.38 ± 0.02 a | 0.36 ± 0.01 ab | 0.37 ± 0.02 ab |
Total sulfur dioxide /(mg/L) | 55.50 ± 0.46 b | 57.34 ± 1.20 b | 55.50 ± 1.82 b | 112.58 ± 1.21 a |
Free sulfur dioxide /(mg/L) | 15.51 ± 0.46 c | 17.20 ± 0.46 b | 16.83 ± 1.21 bc | 32.35 ± 0.79 a |
Compounds | Retention Time/min | J12 | P12 | PW12 | PW5 |
---|---|---|---|---|---|
Gallic acid | 6.558 | 0.30 ± 0.00 a | 0.28 ± 0.00 c | 0.30 ± 0.00 a | 0.29 ± 0.01 b |
Cumaric acid | 10.845 | - | - | - | - |
Catechin | 15.292 | 3.10 ± 0.00 c | 3.45 ± 0.01 a | 3.23 ± 0.06 b | 3.08 ± 0.03 c |
Chlorogenic acid | 17.553 | 0 c | 0.63 ± 0.01 a | 0.61 ± 0.12 a | 0.22 ± 0.00 b |
Epicatechin gallate | 19.559 | - | - | - | - |
Caffeic acid | 20.772 | 0.37 ± 0.01 | 0.36 ± 0.01 | 0.35 ± 0.00 | 0.37 ± 0.03 |
Epicatechin | 21.917 | - | - | - | - |
Syringic acid | 23.208 | - | - | - | - |
Catechin gallate | 30.971 | 0.40 ± 0.01 a | 0.41 ± 0.04 a | 0.31 ± 0.00 b | 0.44 ± 0.01 a |
Ferulic acid | 32.46 | 0.19 ± 0.01 b | 0.18 ± 0.00 bc | 0.17 ± 0.00 c | 0.21 ± 0.02 a |
Benzoic acid | 38.068 | - | - | - | - |
Rutin | 40.258 | 0.39 ± 0.04 b | 0.37 ± 0.01 b | 0.34 ± 0.01 b | 0.48 ± 0.02 a |
Salicylic acid | 41.091 | - | - | - | - |
Myricetin | 45.225 | 0.76 ± 0.03 b | 0.98 ± 0.01 a | 0.95 ± 0.02 a | 0.78 ± 0.03 b |
Morin | 49.582 | 2.15 ± 0.14 a | 1.93 ± 0.11 b | 2.18 ± 0.05 a | 2.17 ± 0.03 a |
Quercitrin | 54.399 | 0.32 ± 0.05 a | 0 c | 0.13 ± 0.03 b | 0.01 ± 0.01 c |
Total | 7.98 ± 0.22 b | 8.59 ± 0.09 a | 8.57 ± 0.16 a | 8.05 ± 0.03 b |
No. | Compounds | Retention Time/min | Odor Description | J12 | P12 | PW12 | PW5 |
---|---|---|---|---|---|---|---|
Alcohols (μg/L) | |||||||
1 | Isobutyl alcohol | 5.019 | Fusel, whiskey | 301.65 ± 6.05 b | 353.56 ± 15.09 a | 166.87 ± 10.41d | 214.22 ± 4.03 c |
2 | 1-Butanol | 6.135 | 3.84 ± 0.00 b | 7.04 ± 0.00 a | 2.61 ± 0.91 c | 4.02 ± 0.00 b | |
3 | Isoamyl alcohol | 7.656 | Fruity, banana, whiskey | 1043.6 ± 47.48 c | 1452.6 ± 53.77 a | 1197.30 ± 5.92 b | 803.57 ± 8.05 d |
4 | 1-Hexanol | 11.323 | Fusel, fruity, sweet, grass just cut | 145.07 ± 7.50 c | 319.93 ± 12.04 a | 192.43 ± 12.21 b | 150.52 ± 2.32 c |
5 | Cis-3-hexenol | 12.056 | 5.55 ± 0.74 b | 8.61 ± 1.36 a | 5.73 ± 1.81 b | 4.36 ± 0.58 b | |
6 | 3-Ethoxypropanol | 11.767 | 10.67 ± 0.74 a | 10.95 ± 1.35 a | 7.82 ± 0.00 b | 0.67 ± 0.58 c | |
7 | 1-Heptanol | 13.918 | Herbal | 2.56 ± 0.00 c | 9.39 ± 0.00 a | 5.21 ± 0.91 b | 5.03 ± 0.00 b |
8 | Isooctyl alcohol | 14.813 | Fruity, lemon | 0 b | 0 b | 0 b | 4.36 ± 0.58 a |
9 | 1-Decanol | 21.292 | 1.28 ± 0.00 c | 2.35 ± 0.01 b | 3.13 ± 0.00 a | 1.01 ± 0.00 d | |
10 | Benzyl alcohol | 24.477 | Floral, rose, phenolic | 10.67 ± 0.74 b | 17.11 ± 1.44 a | 6.78 ± 0.9 c | 5.70 ± 0.58 c |
11 | 2-Phenylethanol | 25.687 | Floral, rose, dried rose | 67.41 ± 3.70 b | 65.28 ± 0.00 b | 136.63 ± 1.81 a | 45.26 ± 2.01 c |
Total | 1590.61 ± 54.67 b | 2280.17 ± 74.96 a | 1725.07 ± 24.96 b | 1238.70 ± 12.65 c | |||
Esters (μg/L) | |||||||
12 | Ethyl acetate | 2.249 | Fruity, pineapple | 333.65 ± 24.09 b | 582.763 ± 16.65 a | 278.99 ± 10.06 c | 155.21 ± 5.54 d |
13 | Isoamyl acetate | 5.716 | Fruity, banana | 223.16 ± 3.22 c | 645.33 ± 22.39 a | 584.06 ± 18.80 b | 183.38 ± 2.53 d |
14 | Ethyl hexanoate | 8.361 | Sweet fruity, pineapple, waxy, green | 382.72 ± 13.55 d | 839.32 ± 36.46 a | 556.94 ± 23.36 b | 447.21 ± 7.81 c |
15 | Hexyl acetate | 9.32 | Fruity, green, apple, banana, sweet | 93.01 ± 1.96 d | 685.23 ± 27.06 a | 394.24 ± 15.09 b | 146.16 ± 3.07 c |
16 | Ethyl 4-hexenoate | 9.826 | Sweet fruity, pineapple | 0 c | 0 c | 6.26 ± 0.00 b | 95.21 ± 4.54 a |
17 | Trans-3-hexenyl acetate | 10.42 | 7.68 ± 0.00 d | 24.25 ± 1.35 a | 17.21 ± 0.00 b | 10.39 ± 0.58 c | |
18 | Propyl hexanoate | 10.525 | Fruity, pineapple, loganberry | 2.56 ± 0.00 ab | 3.91 ± 1.35 a | 1.56 ± 0.00 bc | 1.01 ± 0.00 c |
19 | Cis-2-hexenyl acetate | 10.875 | 0 d | 50.06 ± 1.36 a | 23.99 ± 0.90 c | 28.83 ± 1.54 b | |
20 | Ethyl trans-2-hexenoate | 12.162 | 4.27 ± 0.74 b | 3.91 ± 1.35 b | 2.61 ± 0.90 b | 6.71 ± 0.57 a | |
21 | Methyl octanoate | 12.287 | Citrus | 2.56 ± 0.00 b | 9.39 ± 0.00 a | 8.34 ± 0.91 a | 8.15 ± 1.00 a |
22 | Ethyl octanoate | 13.524 | Fruity, pineapple, creamy, dairy | 1491.2 ± 35.91 c | 3393.3 ± 19.168 a | 2461.4 ± 54.87 b | 1009.7 ± 49.85 d |
23 | Isopentyl hexanoate | 14.07 | Fruity, apples, pineapples | 3.84 ± 0.00 c | 12.51 ± 1.36 a | 8.87 ± 0.91 b | 4.03 ± 0.00 c |
24 | Octyl acetate | 14.468 | 1.28 ± 0.00 c | 10.95 ± 1.35 a | 6.26 ± 0.00 b | 2.01 ± 0.00 c | |
25 | Ethyl 2,4-hexadienoate | 14.53 | 0 c | 0c | 5.21 ± 0.91 b | 21.79 ± 2.10 a | |
26 | Ethyl 7-octenoate | 14.714 | 0 c | 2.35 ± 0.00 a | 0 b | 1.68 ± 0.57 d | |
27 | Propyl octanoate | 15.57 | 11.95 ± 0.74 c | 25.81 ± 0.00 a | 15.45 ± 1.29 b | 2.01 ± 0.00 d | |
28 | Ethyl nonanoate | 15.985 | Sweet, fruity, pear | 8.11 ± 0.74 c | 25.03 ± 1.35 a | 16.15 ± 0.92 b | 10.06 ± 1.01 c |
29 | Isobutyl n-octanoate | 16.388 | 7.68 ± 0.00 b | 21.12 ± 2.35 c | 10.95 ± 0.00 c | 5.36 ± 0.58 a | |
30 | Octyl formate | 16.445 | 0 c | 17.99 ± 1.35 a | 8.34 ± 0.91 b | 0 c | |
31 | Nonyl acetate | 16.966 | 1.28 ± 0.00 c | 7.82 ± 1.36 a | 4.69 ± 0.00 b | 2.01 ± 0.00 c | |
32 | Methyl decanoate | 17.372 | 0 c | 9.39 ± 0.00 a | 6.78 ± 0.91 b | 3.01 ± 0.01 d | |
33 | Ethyl decanoate | 18.449 | Fruity, waxy, apple grape, brandy | 866.56 ± 6.77 c | 2537.5 ± 94.52 a | 1807.5 ± 38.46 b | 462.96 ± 62.86 d |
34 | Ethyl benzoate | 18.747 | Mint | 34.13 ± 1.95 b | 64.14 ± 1.36 a | 28.16 ± 0.00 c | 37.21 ± 4.02 b |
35 | Isopentyl octanoate | 18.881 | Pineapple, coconut, brandy | 29.44 ± 1.28 c | 82.91 ± 1.36 a | 79.79 ± 1.57 b | 21.80 ± 1.55 d |
36 | Ethyl 9-decenoate | 19.584 | Fruity, fatty | 20.91 ± 1.96 d | 132.20 ± 1.89 a | 62.58 ± 3.13 b | 53.30 ± 7.04 c |
37 | Benzyl acetate | 20.196 | 2.99 ± 0.74 b | 5.47 ± 1.36 a | 1.56 ± 0.00 b | 2.01 ± 0.00 b | |
38 | Propyl decanoate | 20.396 | Fruity | 11.09 ± 2.66 b | 13.30 ± 1.36 ab | 16.15 ± 0.92 a | 4.36 ± 0.58 d |
39 | Isobutyl decanoate | 21.186 | Fruity | 2.13 ± 0.74 b | 7.92 ± 1.36 b | 4.69 ± 0.00 b | 53.30 ± 7.04 a |
40 | Ethyl laurate | 23.958 | Floral, fruity | 91.73 ± 5.17 c | 377.03 ± 23.15 a | 277.43 ± 11.32 b | 52.97 ± 3.81 d |
41 | Isopentyl decanoate | 24.643 | Banana, brandy | 4.27 ± 0.74 b | 5.47 ± 1.36 a | 5.74 ± 0.91 a | 0.67 ± 0.06 b |
42 | Ethyl palmitate | 38.655 | Light wax, creamy | 4.27 ± 0.74 a | 5.47 ± 1.36 a | 5.73 ± 0.91 a | 0.67 ± 0.58 b |
43 | Diethyl phthalate | 40.181 | 25.60 ± 1.28 b | 35.98 ± 1.35 a | 22.42 ± 0.91 c | 23.13 ± 1.01 c | |
Total | 3666.35 ± 66.79 c | 9642.45 ± 323.79 a | 6735.46 ± 126.93 b | 2803.93 ± 153.12 d | |||
Acids (μg/L) | |||||||
44 | Butanoic acid | 17.876 | Cheese | 0 c | 4.69 ± 0.00 a | 4.28 ± 1.06 a | 2.01 ± 0.00 b |
45 | Hexanoic acid | 23.541 | Fatty, cheesy, fruity | 20.05 ± 0.74 b | 54.76 ± 2.71 a | 56.93 ± 6.62 a | 20.45 ± 0.58 b |
46 | Octanoic acid | 31.207 | Acidic, cheesy, fruity | 57.17 ± 6.57 c | 133.76 ± 4.06 b | 200.8 ± 2.14 a | 48.37 ± 1.74 c |
47 | Decanoic acid | 38.083 | Rancid, fat | 9.81 ± 1.48 c | 28.94 ± 3.58 b | 52.65 ± 5.31 a | 10.73 ± 0.58 c |
48 | Benzoic acid | 41.157 | 0 c | 3.13 ± 1.35 a | 1.22 ± 1.06 bc | 2.68 ± 0.58 ab | |
Total | 87.04 ± 9.39 c | 225.28 ± 10.75 b | 315.88 ± 33.21 a | 84.15 ± 2.90 c | |||
Terpenoids and lactones (μg/L) | |||||||
49 | Linalool | 16.225 | Citrus, floral, sweet, rose, woody, green, blueberry | 23.47 ± 1.96 a | 18.77 ± 0.00 b | 17.18 ± 1.03 b | 16.43 ± 2.32 b |
50 | Citronellol | 21.359 | Lemon, citrus | 3.41 ± 0.74 a | 2.35 ± 0.00 a | 3.06 ± 1.06 a | 1.01 ± 0.00 b |
51 | α-Terpineol | 250 | Floral, pine | 1.28 ± 0.01 a | 0 b | 0 b | 0 b |
52 | γ-Decalactone | 33.188 | Coconut, peach | 5.97 ± 0.74 c | 11.61 ± 0.21 a | 7.96 ± 1.06 b | 4.03 ± 0.00 d |
Total | 34.13 ± 3.22 a | 32.85 ± 0.00 a | 28.16 ± 1.06 b | 21.45 ± 2.33 c | |||
Aldehydes (μg/L) | |||||||
53 | Decanal | 14.938 | Citrus, floral, sweet fruity | 3.35 ± 0.58 b | 1.57 ± 0.36 b | 1.84 ± 0.00 ab | 3.35 ± 0.58 a |
54 | Benzaldehyde | 15.239 | Cherry, bitter almond | 5.97 ± 1.48 b | 7.04 ± 0.00 b | 3.06 ± 1.06 b | 102.59 ± 7.59 a |
Total | 7.25 ± 1.48 b | 8.61 ± 1.36 b | 4.90 ± 1.06 b | 105.93 ± 7.68 a |
No. | Compounds | Odor Threshold (µg/L) | Relative Odor Activity Value (ROAV) | |||
---|---|---|---|---|---|---|
J12 | P12 | PW12 | PW15 | |||
1 | Isobutyl alcohol | 40,000 | <0.01 | <0.01 | <0.01 | <0.01 |
2 | Isoamyl alcohol | 30,000 | <0.01 | 0.01 | <0.01 | <0.01 |
3 | 1-Hexanol | 8000 | <0.01 | <0.01 | <0.01 | <0.01 |
4 | Cis-3-hexenol | 400 | <0.01 | <0.01 | <0.01 | <0.01 |
5 | Benzyl alcohol | 200,000 | <0.01 | <0.01 | <0.01 | <0.01 |
6 | 2-Phenylethanol | 14,000 | <0.01 | <0.01 | <0.01 | <0.01 |
7 | Ethyl Acetate | 7500 | 0.01 | 0.02 | 0.01 | <0.01 |
8 | Isoamyl acetate | 30 | 1.51 | 4.37 | 3.95 | 1.24 |
9 | Ethyl hexanoate | 14 | 5.55 | 12.18 | 8.08 | 6.49 |
10 | Hexyl acetate | 1500 | 0.01 | 0.09 | 0.05 | 0.02 |
11 | Ethyl octanoate | 5 | 100 | 100 | 100 | 100 |
12 | Ethyl nonanoate | 1300 | <0.01 | 0.09 | 0.05 | <0.01 |
13 | Methyl decanoate | 6 | 0 | 0.32 | 0.23 | 0.10 |
14 | Ethyl decanoate | 200 | 0.88 | 2.58 | 1.84 | 0.47 |
15 | Ethyl benzoate | 53 | 0.13 | 0.25 | 0.11 | 0.14 |
16 | Isopentyl octanoate | 125 | 0.05 | 0.13 | 0.13 | 0.04 |
17 | Ethyl laurate | 1500 | 0.01 | 0.05 | 0.04 | <0.01 |
18 | Ethyl palmitate | 1000 | <0.01 | <0.01 | <0.01 | <0.01 |
19 | Butanoic acid | 173 | 0 | <0.01 | <0.01 | <0.01 |
20 | Hexanoic acid | 42 | 0.10 | 0.26 | 0.28 | 0.10 |
21 | Octanoic acid | 500 | 0.02 | 0.05 | 0.08 | 0.02 |
22 | Decanoic acid | 1000 | <0.01 | <0.01 | 0.01 | <0.01 |
23 | Benzoic acid | 1000 | 0 | <0.01 | <0.01 | <0.01 |
24 | Linalool | 25 | 0.19 | 0.15 | 0.14 | 0.13 |
25 | Citronellol | 100 | <0.01 | <0.01 | <0.01 | <0.01 |
26 | α-Terpineol | 250 | <0.01 | 0 | 0 | 0 |
27 | γ-Decalactone | 88 | 0.01 | 0.03 | 0.02 | <0.01 |
28 | Decanal | 10 | 0.07 | 0.03 | 0.04 | 0.07 |
29 | Benzaldehyde | 3000 | <0.01 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Gao, D.; Wang, C.; Gao, H.; Guo, Y.; Zhao, Z.; Shi, H. Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. Fermentation 2022, 8, 604. https://doi.org/10.3390/fermentation8110604
Liang H, Gao D, Wang C, Gao H, Guo Y, Zhao Z, Shi H. Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. Fermentation. 2022; 8(11):604. https://doi.org/10.3390/fermentation8110604
Chicago/Turabian StyleLiang, Hongmin, Deyan Gao, Cong Wang, Huanhuan Gao, Yayun Guo, Zhiyun Zhao, and Hongmei Shi. 2022. "Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines" Fermentation 8, no. 11: 604. https://doi.org/10.3390/fermentation8110604
APA StyleLiang, H., Gao, D., Wang, C., Gao, H., Guo, Y., Zhao, Z., & Shi, H. (2022). Effect of Fermentation Strategy on the Quality and Aroma Characteristics of Yellow Peach Wines. Fermentation, 8(11), 604. https://doi.org/10.3390/fermentation8110604