Next Issue
Volume 5, December
Previous Issue
Volume 5, June
 
 

Non-Coding RNA, Volume 5, Issue 3 (September 2019) – 5 articles

Cover Story (view full-size image): Long noncoding RNAs (lncRNAs) are emerging as fundamental players in gene regulation determining the outcomes of a plethora of cellular functions. Recent studies have identified a number of lncRNAs as critical regulators of T helper cell differentiation, activation, and function. As RNA targeting therapeutics are rapidly gaining attention, further characterising the mechanistic role of lncRNAs in CD4+ T cells is an exciting challenge which may unearth a wide range of novel candidate therapeutic targets for treatment of infectious diseases and chronic immunopathologies. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2571 KiB  
Article
Long Non-Coding RNAs as Molecular Signatures for Canine B-Cell Lymphoma Characterization
by Luciano Cascione, Luca Giudice, Serena Ferraresso, Laura Marconato, Diana Giannuzzi, Sara Napoli, Francesco Bertoni, Rosalba Giugno and Luca Aresu
Non-Coding RNA 2019, 5(3), 47; https://doi.org/10.3390/ncrna5030047 - 19 Sep 2019
Cited by 10 | Viewed by 4840
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL) and follicular lymphoma (FL) are the most common B-cell lymphomas (BCL) in dogs. Recent investigations have demonstrated overlaps of these histotypes with the human counterparts, including clinical presentation, biologic behavior, tumor genetics, and [...] Read more.
Background: Diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL) and follicular lymphoma (FL) are the most common B-cell lymphomas (BCL) in dogs. Recent investigations have demonstrated overlaps of these histotypes with the human counterparts, including clinical presentation, biologic behavior, tumor genetics, and treatment response. The molecular mechanisms that underlie canine BCL are still unknown and new studies to improve diagnosis, therapy, and the utilization of canine species as spontaneous animal tumor models are undeniably needed. Recent work using human DLBCL transcriptomes has suggested that long non-coding RNAs (lncRNAs) play a key role in lymphoma pathogenesis and pinpointed a restricted number of lncRNAs as potential targets for further studies. Results: To expand the knowledge of non-coding molecules involved in canine BCL, we used transcriptomes obtained from a cohort of 62 dogs with newly-diagnosed multicentric DLBCL, MZL and FL that had undergone complete staging work-up and were treated with chemotherapy or chemo-immunotherapy. We developed a customized R pipeline performing a transcriptome assembly by multiple algorithms to uncover novel lncRNAs, and delineate genome-wide expression of unannotated and annotated lncRNAs. Our pipeline also included a new package for high performance system biology analysis, which detects high-scoring network biological neighborhoods to identify functional modules. Moreover, our customized pipeline quantified the expression of novel and annotated lncRNAs, allowing us to subtype DLBCLs into two main groups. The DLBCL subtypes showed statistically different survivals, indicating the potential use of lncRNAs as prognostic biomarkers in future studies. Conclusions: In this manuscript, we describe the methodology used to identify lncRNAs that differentiate B-cell lymphoma subtypes and we interpreted the biological and clinical values of the results. We inferred the potential functions of lncRNAs to obtain a comprehensive and integrative insight that highlights their impact in this neoplasm. Full article
(This article belongs to the Special Issue Non-Coding RNAs: Variations and Disease)
Show Figures

Figure 1

22 pages, 3372 KiB  
Review
The Growth-Arrest-Specific (GAS)-5 Long Non-Coding RNA: A Fascinating lncRNA Widely Expressed in Cancers
by Anton Scott Goustin, Pattaraporn Thepsuwan, Mary Ann Kosir and Leonard Lipovich
Non-Coding RNA 2019, 5(3), 46; https://doi.org/10.3390/ncrna5030046 - 17 Sep 2019
Cited by 50 | Viewed by 6058
Abstract
Long non-coding RNA (lncRNA) genes encode non-messenger RNAs that lack open reading frames (ORFs) longer than 300 nucleotides, lack evolutionary conservation in their shorter ORFs, and do not belong to any classical non-coding RNA category. LncRNA genes equal, or exceed in number, protein-coding [...] Read more.
Long non-coding RNA (lncRNA) genes encode non-messenger RNAs that lack open reading frames (ORFs) longer than 300 nucleotides, lack evolutionary conservation in their shorter ORFs, and do not belong to any classical non-coding RNA category. LncRNA genes equal, or exceed in number, protein-coding genes in mammalian genomes. Most mammalian genomes harbor ~20,000 protein-coding genes that give rise to conventional messenger RNA (mRNA) transcripts. These coding genes exhibit sweeping evolutionary conservation in their ORFs. LncRNAs function via different mechanisms, including but not limited to: (1) serving as “enhancer” RNAs regulating nearby coding genes in cis; (2) functioning as scaffolds to create ribonucleoprotein (RNP) complexes; (3) serving as sponges for microRNAs; (4) acting as ribo-mimics of consensus transcription factor binding sites in genomic DNA; (5) hybridizing to other nucleic acids (mRNAs and genomic DNA); and, rarely, (6) as templates encoding small open reading frames (smORFs) that may encode short proteins. Any given lncRNA may have more than one of these functions. This review focuses on one fascinating case—the growth-arrest-specific (GAS)-5 gene, encoding a complicated repertoire of alternatively-spliced lncRNA isoforms. GAS5 is also a host gene of numerous small nucleolar (sno) RNAs, which are processed from its introns. Publications about this lncRNA date back over three decades, covering its role in cell proliferation, cell differentiation, and cancer. The GAS5 story has drawn in contributions from prominent molecular geneticists who attempted to define its tumor suppressor function in mechanistic terms. The evidence suggests that rodent Gas5 and human GAS5 functions may be different, despite the conserved multi-exonic architecture featuring intronic snoRNAs, and positional conservation on syntenic chromosomal regions indicating that the rodent Gas5 gene is the true ortholog of the GAS5 gene in man and other apes. There is no single answer to the molecular mechanism of GAS5 action. Our goal here is to summarize competing, not mutually exclusive, mechanistic explanations of GAS5 function that have compelling experimental support. Full article
(This article belongs to the Special Issue Clinical Potential of Non-coding RNAs in Cancer)
Show Figures

Figure 1

7 pages, 796 KiB  
Review
meiRNA, A Polyvalent Player in Fission Yeast Meiosis
by Akira Yamashita
Non-Coding RNA 2019, 5(3), 45; https://doi.org/10.3390/ncrna5030045 - 17 Sep 2019
Cited by 10 | Viewed by 4495
Abstract
A growing number of recent studies have revealed that non-coding RNAs play a wide variety of roles beyond expectation. A lot of non-coding RNAs have been shown to function by forming intracellular structures either in the nucleus or the cytoplasm. In the fission [...] Read more.
A growing number of recent studies have revealed that non-coding RNAs play a wide variety of roles beyond expectation. A lot of non-coding RNAs have been shown to function by forming intracellular structures either in the nucleus or the cytoplasm. In the fission yeast Schizosaccharomyces pombe, a non-coding RNA termed meiRNA has been shown to play multiple vital roles in the course of meiosis. meiRNA is tethered to its genetic locus after transcription and forms a peculiar intranuclear dot structure. It ensures stable expression of meiotic genes in cooperation with an RNA-binding protein Mei2. Chromosome-associated meiRNA also facilitates recognition of homologous chromosome loci and induces robust pairing. In this review, the quarter-century history of meiRNA, from its identification to functional characterization, will be outlined. Full article
(This article belongs to the Special Issue Non-Coding RNA and Intracellular Structures)
Show Figures

Figure 1

10 pages, 986 KiB  
Article
High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter
by Kinan Drak Alsibai, Sophie Vacher, Didier Meseure, Andre Nicolas, Marick Lae, Anne Schnitzler, Walid Chemlali, Jerome Cros, Elisabeth Longchampt, Wulfran Cacheux, Geraldine Pignot, Celine Callens, Eric Pasmant, Yves Allory and Ivan Bieche
Non-Coding RNA 2019, 5(3), 44; https://doi.org/10.3390/ncrna5030044 - 21 Aug 2019
Cited by 20 | Viewed by 4906
Abstract
The CDKN2B-AS1 gene, also called ANRIL, is located at the human CDKN2A/B locus at 9p21.3 and transcribed by RNA polymerase II into a long non-coding RNA of 3834 bp. The CDKN2B-AS1 gene overlaps a critical region of 125 kb covering the CDKN2B [...] Read more.
The CDKN2B-AS1 gene, also called ANRIL, is located at the human CDKN2A/B locus at 9p21.3 and transcribed by RNA polymerase II into a long non-coding RNA of 3834 bp. The CDKN2B-AS1 gene overlaps a critical region of 125 kb covering the CDKN2B gene. The CDKN2A/B locus encompasses three major tumor suppressors juxtaposed and joined into a p16-CDKN2A/p15-CDKN2B/p14-ARF gene cluster. CDKN2A encodes splice variants p16-CDKN2A and p14-ARF, and CDKN2B encodes p15-CDKN2B. ANRIL shares a bidirectional promoter with the p14-ARF gene and is transcribed from the opposite strand to the cluster. We performed an analysis of the expression level of ANRIL and tumor suppressor p16-CDKN2A, p15-CDKN2B, and p14-ARF genes using quantitative RT-PCR in a multitumor panel. We observed the overexpression of the four genes ANRIL, p16-CDKN2A, p15-CDKN2B, and p14-ARF in the great majority of the 17 different cancer types. ANRIL was upregulated in 13/17 tumors compared to normal tissues, ranging from 5% (prostate cancer) to 91% (cervix cancer), with variable expression of p16-CDKN2A, p15-CDKN2B, and p14-ARF genes. A high positive correlation was identified between levels of expression of ANRIL and the three tumor suppressors. The strongest positive association was observed with p14-ARF (p < 0.001) in all but one (lung squamous cell carcinoma) of the examined tumor types. This correlation suggests coordinated deregulated mechanisms in all cancer types through aberrant activation of a bidirectional p14-ARF/ANRIL promoter. Furthermore, significant positive correlation was unexpectedly established in prostatic carcinomas, in contradiction with previous data. Full article
Show Figures

Figure 1

15 pages, 1042 KiB  
Review
Long Non-Coding RNA Function in CD4+ T Cells: What We Know and What Next?
by Katie A. West and Dimitris Lagos
Non-Coding RNA 2019, 5(3), 43; https://doi.org/10.3390/ncrna5030043 - 12 Jul 2019
Cited by 18 | Viewed by 5282
Abstract
The non-coding genome has previously been regarded as “junk” DNA; however, emerging evidence suggests that the non-coding genome accounts for some of the greater biological complexity observed in mammals. Research into long non-coding RNAs (lncRNAs) has gathered speed in recent years, and a [...] Read more.
The non-coding genome has previously been regarded as “junk” DNA; however, emerging evidence suggests that the non-coding genome accounts for some of the greater biological complexity observed in mammals. Research into long non-coding RNAs (lncRNAs) has gathered speed in recent years, and a growing body of evidence has implicated lncRNAs in a vast range of cellular functions including gene regulation, chromosome organisation and splicing. T helper cells offer an ideal platform for the study of lncRNAs given they function as part of a complex cellular network and undergo remarkable and finely regulated gene expression changes upon antigenic stimulation. Using various knock down and RNA interaction studies several lncRNAs have been shown to be crucial for T helper cell differentiation, activation and function. Given that RNA targeting therapeutics are rapidly gaining attention, further understanding the mechanistic role of lncRNAs in a T helper context is an exciting area of research, as it may unearth a wide range of new candidate targets for treatment of CD4+ mediated pathologies. Full article
(This article belongs to the Special Issue Non-Coding RNA and the Immune System)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop