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Abstract: Background: Diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL) and
follicular lymphoma (FL) are the most common B-cell lymphomas (BCL) in dogs. Recent investigations
have demonstrated overlaps of these histotypes with the human counterparts, including clinical
presentation, biologic behavior, tumor genetics, and treatment response. The molecular mechanisms
that underlie canine BCL are still unknown and new studies to improve diagnosis, therapy, and the
utilization of canine species as spontaneous animal tumor models are undeniably needed. Recent work
using human DLBCL transcriptomes has suggested that long non-coding RNAs (lncRNAs) play a key
role in lymphoma pathogenesis and pinpointed a restricted number of lncRNAs as potential targets for
further studies. Results: To expand the knowledge of non-coding molecules involved in canine BCL,
we used transcriptomes obtained from a cohort of 62 dogs with newly-diagnosed multicentric DLBCL,
MZL and FL that had undergone complete staging work-up and were treated with chemotherapy
or chemo-immunotherapy. We developed a customized R pipeline performing a transcriptome
assembly by multiple algorithms to uncover novel lncRNAs, and delineate genome-wide expression
of unannotated and annotated lncRNAs. Our pipeline also included a new package for high
performance system biology analysis, which detects high-scoring network biological neighborhoods
to identify functional modules. Moreover, our customized pipeline quantified the expression of
novel and annotated lncRNAs, allowing us to subtype DLBCLs into two main groups. The DLBCL
subtypes showed statistically different survivals, indicating the potential use of lncRNAs as prognostic
biomarkers in future studies. Conclusions: In this manuscript, we describe the methodology used to
identify lncRNAs that differentiate B-cell lymphoma subtypes and we interpreted the biological and
clinical values of the results. We inferred the potential functions of lncRNAs to obtain a comprehensive
and integrative insight that highlights their impact in this neoplasm.
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1. Background

Lymphoma is a malignant tumor that occurs in both humans and dogs as the result of a neoplastic
transformation of B or T lymphocytes at different stages of development [1,2]. In veterinary medicine,
B-cell lymphomas (BCL) are the most studied tumors as they represent an important comparative
model for the human disease [2–4]. Among the different subtypes, diffuse large B cell lymphoma
(DLBCL) is the most frequent in humans and dogs alike. Marginal zone lymphoma (MZL) is much
more common in dogs than in humans, while the opposite is true for follicular lymphoma (FL).

The diagnosis of lymphoma in the dog can be relatively straightforward, but the precise definition
of the different BCL histotypes and the prediction of the outcome are still challenging. Similar to
human lymphoma, BCLs have a heterogeneous biological and clinical behavior. In 2013, a canine
DNA-microarray platform was used for the first time by Richards, and colleagues, to study DLBCL and
MZL [5]. They observed a generalized NF-kB pathway activation which mirrored human activated B
cell-like DLBCL (ABC-DLBCL). Six years later, a high-throughput sequencing approach (RNA-seq)
successfully characterized canine DLBCL [6]; but analysis of the coding transcriptome was not able to
clearly discriminate between DLBCL and MZL [7].

Other omics have been used to profile canine BCL and to identify potential biomarkers. A first
approach profiled DLBCL with a canine-specific CpG DNA microarray [8]. DLBCLs presented a stem
cell-like epigenetic signature, consistent with a high number of polycomb repressive complex targets,
in stem cells affected by aberrant methylation. The analysis of epigenetic patterns and genome-wide
methylation variability identified DLBCL subgroups with different outcomes, suggesting that the
accumulation of aberrant epigenetic changes results in a more aggressive behavior of this tumor.
Recently, high throughput sequencing technologies were applied to study methylation in canine
BCL [6]. A methyl-CpG binding domain (MBD)-based approach was used to capture methylated DNA
fragments, and then sequenced. The study confirmed previous data on the dysfunction of stemness
genes in canine BCL, and showed that it was possible to characterize epigenetic aberrations in gene
promoters at a single base level, including in introns and intergenic regions. Moreover, unsupervised
hierarchical clustering of promoter methylation profiles separated dogs with DLBCL into two groups
with different overall, and event free, survival. Finally, somatic mutations by whole exome sequencing
were described in three pure canine breeds with different lymphoma predispositions, and genes with
known involvement in human lymphoma have been described [9].

Despite increasing knowledge of canine BCL biology, the molecular mechanisms driving tumor
development, and clinical outcome, are only partially understood. Moreover, the protein-coding
genes that have been identified in canine BCL cannot fully explain the origin, or differences, within
the different histotypes. A large portion of mammalian genomes is actively transcribed into RNA,
but only about 1.5% of these transcripts are protein-coding; the remaining transcripts are transcribed
into non-coding RNAs (ncRNAs). For a long time, ncRNAs received little attention, but their role in
regulating complex biological processes has recently been demonstrated [10,11]. Long non-coding
RNAs (lncRNAs) are a group of ncRNAs arbitrarily defined as transcripts longer than 200 bp that lack
an extended protein-coding open reading frame. Even though their expression levels are generally
lower compared to protein-coding genes, lncRNAs influence several aspects of cellular homeostasis,
proliferation, apoptosis, and genomic stability. LncRNAs expression profiles are highly tissue-specific
in both dog and human, and despite minimal overall sequence similarity, lncRNAs have evolutionarily
conserved functions and regulatory effects restricted to specific cell types. This was also recently
demonstrated by Le Béguec et al. [12] who identified over 900 conserved dog-human lncRNAs. In BCL,
Verma et al. [13] detected lncRNAs as playing key roles in lymphomagenesis, pathogenesis and
impacting on B-cell oncogenes, with a fraction being common between human and dog.

In view of this, we explored and characterized the lncRNA landscape in canine lymphoma and
sought to identify lncRNAs differentiating DLBCL, MZL and FL.
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2. Methods

The two previously published pipelines for lncRNAs detection consisted of aligning and
assembling transcripts, creating a unique transcriptome, comparing the data with the annotated
genome, and finally evaluating the coding potential of each novel transcript in order to separate coding
and non-coding transcripts. Verma et al. [13] used CPAT [14], which is generally suggested for well
annotated organisms; whereas Wucher et al. [15] proposed a new method to identify lncRNAs when
genomes are not well annotated, or where a list of annotated lncRNAs is not available.

Here, we describe a modified pipeline for the detection and analysis of novel and annotated
lncRNAs in canine BCL (see Figure 1). The dataset included dogs affected by DLBCL (n = 50), FL (n = 7),
and MZL (n = 5) that had undergone complete staging work-up and were treated with chemotherapy
or chemo-immunotherapy. All dogs underwent lymphadenectomy to confirm lymphoma histotype by
routine histology and immunohistochemistry, and a portion of the neoplastic lymph node was preserved
in RNA-later for research purposes. Normal canine B-cells were obtained from the lymph nodes of 13
clinically normal dogs. The B-cell compartment was isolated by laser capture microdissection, and then
frozen preserved. Approval for this study was granted by MIUR Ethical Board (Number RBSI14EDX9).
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Figure 1. Diagram of the RNA-sequence analysis workflow. Illumina reads are aligned with STAR
using as reference genome CanFam3.1.87, assembled to discover novel and annotated transcripts,
and then merged by StringTie. The output consensus transcriptome is compared to CanFam3.1.87 by
Cuffcompare to detect protein coding genes, lncRNAs, and other molecules. The known transcripts are
filtered out to keep novel lncRNAs with enough coding potential computed using FEELnc_codpot.
Finally, transcripts are validated using BLAST and both the novel and the annotated ones are quantified
using HTSeq-count. The resulting lncRNAs, with their related counts, are analysed by Limma and
EdgeR to identify differentially expressed ones.

Library preparation and sequencing approach have been described elsewhere [6,16]. Reads were
deposited in GenBank (accession numbers SRP137798 and SRP140599).

Illumina reads were first preprocessed with FastaQC software in order to assess the quality of the
sequences. Reads were aligned with STAR [17] using the canine reference genome (CanFam3.1.87),
assembled in de novo mode to find novel and annotated transcripts, and then merged by StringTie [18].
StringTie was preferred to CuffLink because of its higher speed and comparable accuracy [19].
Cuffcompare, a tool of the CuffLinks suite, was used to compare the consensus transcriptome outputted
by StringTie to CanFam3.1.87. By using parameters -M and -R, the process was accelerated since both
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monoexonic transcripts and transcripts present only in the reference annotation were not considered.
The comparison step detected all the protein coding genes, annotated lncRNAs, and other transcripts.
The annotated transcripts were then filtered out maintaining only the ones flagged as unknown
and considered as potential novel lncRNAs (see Figure 2). Transcripts in chromosomes 1-38 or
chromosome X, containing at least 2 exons, and with an exon length greater than 200 nucleotides
were maintained. The resulting transcriptome was converted into a FASTA file and given as input to
FEELnc_codpot [15], which estimated the coding potential of transcripts. As input, FEELnc required
the two FASTA files containing the protein-coding and the lncRNAs sequences. It produced a list of
all the transcripts associated to their corresponding coding potential and the cutoff that separated
coding from non-coding transcripts. Further, transcripts were validated by using the command
line version of BLAST and novel and annotated transcripts were quantified by using htseq-count in
single-stranded mode by HTSeq software package [20]. Only reads that were uniquely aligned were
retained. Differential expression analysis was performed in R, using the limma [21] and edgeR [22]
packages. Only novel transcripts with cpm ≥ 10, and annotated ones with cpm ≥ 1 in at least 3
samples, were considered [23]. Deregulated expression of transcripts was considered when FDR <0.05
(p-value adjusted for multiple comparisons). Tumor subtyping was performed by using R-ISDBSCAN
clustering algorithm [24], which is an extension of the density-based clustering algorithm DBSCAN [25].
Density-based algorithms compared to partition-clustering methods, such as k-means, were able to
automatically detect the number of subtypes and noise elements (outliers) in the dataset. R-ISDBSCAN
outperformed DBSCAN in the accuracy of group identification, handling local point density changes
more appropriately.
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Figure 2. (A) Filtering steps applied to the initially discovered novel transcripts to identify bona fide
novel lncRNAs, based on exon count, transcript length, and non-coding potential using FEELnc. Post
these, expression level filtering (cpm ≥ 10 in 3 samples or more) was performed. (B) Multidimensional
scaling (MDS) plot of RNA-Seq data for: annotated lncRNA genes (left) and novel lncRNA genes
(right). Each dot represents a sample, which is colored by its histology.

Overall survival (OS) was defined as the time from diagnosis to death, and event-free survival
(EFS) was defined as the time from starting therapy to the date of any diagnosed relapse. Survival was
estimated with the Kaplan-Meier method [26] and compared by log-rank test [27]. P values less than
0.05 were considered statistically significant. The p-values for multiple comparisons were adjusted
using the Benjamini–Hochberg correction. The performance of the lncRNAs model and protein-coding
genes signature for OS and EFS was compared by a measure of global fit (AIC) and a measure of
discrimination (CPE) along with its 95% CI [28–30]. Low AIC values indicated a better fit, and high
CPE values discriminated better.

For functional analysis of lncRNAs, a guilty-by-association approach was used where all the
protein-coding genes close to lncRNAs were retrieved using FEELnc_classifier [15]. All upstream and
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downstream transcripts within 10 kilobases were considered because of the long-range activity of
cis-molecules [31]. Enrichment analysis of the contrasts of interest was performed by DAVID [32],
giving the set of lncRNAs associated protein-coding genes as input. Functional annotation was
performed using the Gene Set Enrichment Analysis (GSEA) tool for overlap analysis and the hallmark
gene set, the c2.cp gene set of the Molecular Signatures Database (MSigDB) 5.2 [33], and custom gene
sets of the IOR Institute [34]. Moreover, the protein-protein interaction network was built using the
same input and cuRnet, an R package that provides GPU solutions of algorithms to analyze biological
networks, was run to identify high-connected subnetworks potentially belonging to the key pathways
that are altered in a studied condition [35]. cuRnet generally solves this issue running a parallel strong
connected component algorithm and interactively visualizes the resulting subnetworks.

3. Results

In order to get an exhaustive catalog of canine lncRNAs we first performed a systematic transcript
discovery using a dataset comprising lymphomas (n = 62) and controls (n = 13). A total of 4478
putative unknown lncRNAs were obtained and found expressed. After filtering in length and coding
potentiality, the number decreased to 1629 lncRNAs, but only 781 were annotated.

Using two previously obtained human and canine BCL datasets (phs000235.v6.p1, SRP021509
and SRA059558), a total of 3.5% and 67% of lncRNAs were found in common, respectively (Figure 2A).
Next, we assessed the differential expression (DE) of both novel, and already annotated lncRNAs in
tumors, and controls. The two groups clustered separately when considering both novel lncRNAs
and annotated lncRNAs (Figure 2B). This result demonstrated a good performance of the method
used, and the biological utility of lncRNAs in differentiating the two classes. Overall, lymphomas were
characterized by a higher number of down-regulated transcripts (Supplementary Material Table S1).
When we performed DE analysis separating tumors by histotypes, the number of lncRNAs differentially
expressed in DLBCLs was markedly higher compared with FL and MZL.

A total of 144 novel lncRNAs were found differentially expressed in DLBCL and MZL. Conversely,
only one novel lncRNA transcript was differentially expressed when DLBCL and FL were compared.
A moderate number of differentially expressed lncRNAs was also found when comparing MZL with
FL, but the number of cases in the two datasets was too low to obtain further information. Figure 3
shows the number of differentially expressed lncRNAs, and a list of all the transcripts is provided in
Supplementary Material Table S1.

We investigated the putative function of differentially expressed lncRNAs by associating
protein-coding genes to lncRNAs within 10 kilobases. We then applied three strategies to identify
significantly correlated pathways (Supplementary Material Tables S2–S4).

The analysis showed significant enrichment of GO and KEGG terms among lymphoma subtypes.
Modulated lncRNAs in DLBCL vs Control, and MZL vs Control were primarily involved in the
regulation of cell proliferation, chromatin silencing, cell death and transcriptional misregulation
(Figure 4).
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Next, considering the high clinical and biological heterogeneity of canine DLBCL, we applied a
density-based algorithm to identify lncRNAs signatures affecting the clinical behavior of this histotype.
Three distinct subgroups, comprising 44 DLBCLs were obtained and named DLBCL1, DLBCL2, and
DLBCL3. Six tumors were labelled as noise by the algorithm and were therefore excluded. The three
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groups reflected different clinical behaviors with dogs in the DLBCL1 group, being characterized
by significantly shorter OS and EFS compared to dogs in DLBCL2 and DLBCL3 groups (Figure 5).
Also, differential expression analysis between DLBCL1 and DLBCL2 showed a higher number of
differentially expressed lncRNAs than other comparisons (Figure 6). These results underline the utility
of lncRNA profiles in defining clinically diverse groups.Non-Coding RNA 2019, 5, x FOR PEER REVIEW 7 of 11 
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represents Upregulated (Up), not statistically significant modulated (NotSign), and Downregulated
(Down) molecules. Each colored proportion of a bar is equal to the percentage of the number of
lncRNAs respect of the total amount for deregulated molecules.

Previous studies with DNA microarray and next generation sequencing had not identified
differences between MZL and DLBCL [4–7,16]. Therefore, we compared MZL against each individual
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DLBCL group hypothesizing differences and similarities among groups. Differential expression
analysis determined a complete overlap of MZL with DLBCL1 and DLBCL3, but not with DLBCL2
(Figure 7).
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to the results of the DE analysis among the overall groups (e.g., DLBCL versus MZL has 22 upregulated
and 68 downregulated lncRNAs).

Previously, when we only considered the expression of protein-coding genes in the same dataset
of DLBCLs, we obtained two groups named EHA1 and EHA2 [6]. The EHA2 group was characterized
by a poorer outcome and showed an enrichment of T-cell-mediated immune response signatures,
compared to EHA1 [6]. The lncRNAs-driven clusters identified here, partially overlapped with EHA1
and EHA2. Seventy-five percent of the dogs in the DLBCL1 group were included in the EHA2 group,
while dogs in DLBCL2, DLBCL3, Noise, and the remaining 25% of dogs in the DLBCL1 group belonged
to the EHA1 group (Supplementary Material Table S5). Dogs in DLBCL1 that were split between EHA1
and EHA2 did not show significant changes for EFS and OS. DLBCL1 represented a homogenous
diagnostic group compared with non-DLBCL1 (see Figure 5), and this was also confirmed by GSEA
analysis (Supplementary material S2) comparing DLBCL1 in EHA1 versus DLBCL1 in EHA2, DLBCL1
in EHA1 versus DLBCL2, and DLBCL3 versus DLBCL1 in EHA2. The Cox model built using lncRNAs
showed a CPE equal to 0.61 (95% CI 0.58–0.64), suggesting that our non-coding predictor had better
discriminatory power than the protein-coding one (0.56, 95% CI 0.52–0.60). Similar conclusions were
reached using the global model fit criterion (AIC), with the prognostic classifier based on lncRNAs,
achieving a better global model fit compared to protein-coding (258.26 vs. 255.35).

4. Discussion

In human medicine lncRNAs are considered fundamental in many biological processes and
are often dysregulated in cancers. Little is known about lncRNAs in dogs and the challenge when
studying lncRNAs is their relatively low abundance and reduced conservation across species. Although
previous studies have demonstrated the involvement of lncRNAs in B-cell lymphoma, comprehensive
characterization of the transcriptome, prognostic role, and functional contribution of lncRNAs in distinct
B-cell subtypes are lacking. Our analysis adds significant and novel insights by providing the most
comprehensive dataset so far for canine DLBCL, MZL and FL. We identified differentially expressed
subtype-specific lncRNAs and investigated their putative function by associating protein-coding genes
and pathways. GO and KEGG pathway analysis revealed that differentially expressed lncRNAs served
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as regulators of cell proliferation, transcription, and cell cycle (Supplementary Material Tables S2–S4).
The dysregulation of pathways related to B-cells has been consistently observed both in human and
canine lymphomas and here we show that when considering expressed lncRNAs the similarity is
maintained between the two species. These results reinforce the dog as a valid large animal model
when studying B-cell lymphoma. Moreover, a lncRNAs-based clustering of DLBCL cases largely
overlapped with what we recently achieved using protein coding genes [6], albeit it with a better
identification of subgroups with different outcomes.

One of the most interesting results of this work was obtained when comparing MZL to DLBCL
subgroups. Recent literature has defined MZL as a continuum of DLBCL mostly because the
transcriptomic profiles are very similar [5]. Our work confirms this aspect, but also identified
differences. In fact, a subgroup of DLBCL, named as DLBCL2 cluster, did present a moderate number
of lncRNAs differentially expressed compared to MZL. This observation suggests that only a fraction
of DLBCL might be directly related to MZL, possibly resembling what has recently been reported in
human DLBCL with the identification of DLBCL subtypes bearing genetic lesions, such as NOTCH
activation, that are typically present in MZLs [36,37].

5. Conclusion

In conclusion, our study provides an in-depth analysis of the lncRNAs transcriptome in canine
B-cell lymphoma subtypes. Our analysis underlines the biological and prognostic role of lncRNAs in
this disease. LncRNAs, quantified by our pipeline, clearly separate normal from pathological samples
and uncover previously unidentified differences between DLBCL and MZL. We also found clusters
with prognostic value within the DLBCL histotype: lncRNAs profiling robustly identified, significantly
different, subgroups and identified the DLBCL1 subgroup as having a higher mortality rate than
DLBCL2 and DLBCL3. Thus, our results provide a basis for further studies to characterize the lncRNA
profiles of dogs with a poor prognosis, with the aim of identifying possible predictive biomarkers that
can be utilized at the time of diagnosis. Finally, the findings of this work support the broad translational
application of canine hematological disorders as comparative models for human B-cell lymphoma.
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and KEGG terms associated to each lncRNA in the comparisons of interest, Table S3: Gene sets enriched in the
comparison of interest, Table S4: Gene set enrichment analysis for the identified clusters in the comparison of
interest, Table S5: Contingency table to compare the lncRNA-based classification with the classification based on
protein-coding genes.
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Abbreviations

BCL B-cell lymphomas
DLBCL Diffuse large B cell lymphoma
ncRNA non-coding RNA
MZL marginal zone lymphoma
FL follicular lymphoma
ABC-DLBCL activated B cell-like DLBCL
EFS event-free survival
AIC Akaike’s Information Criterion
CPE concordance probability estimates
GSEA Gene Set Enrichment Analysis
MSigDB Molecular Signatures Database
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