High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. RNA Extraction
2.3. Real-Time RT-PCR
2.4. Database Sources
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kong, Y.; Hsieh, C.H.; Alonso, L.C. ANRIL: A lncRNA at the CDKN2A/B Locus with Roles in Cancer and Metabolic Disease. Front. Endocrinol. 2018, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Holdt, L.M.; Stahringer, A.; Sass, K.; Pichler, G.; Kulak, N.A.; Wilfert, W.; Kohlmaier, A.; Herbst, A.; Northoff, B.H.; Nicolaou, A.; et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 2016, 7, 12429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Nakagawa, H.; Tajima, A.; Yoshida, K.; Inoue, I. ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol. Rep. 2010, 24, 701–707. [Google Scholar] [PubMed] [Green Version]
- Rodriguez, C.; Borgel, J.; Court, F.; Cathala, G.; Forné, T.; Piette, J. CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem. Biophys. Res. Commun. 2010, 392, 129–134. [Google Scholar] [CrossRef]
- Popov, N.; Gil, J. Epigenetic regulation of the INK4b-ARF-INK4a locus: In sickness and in health. Epigenetics 2010, 5, 685–690. [Google Scholar] [CrossRef]
- Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 2010, 38, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Kotake, Y.; Nakagawa, T.; Kitagawa, K.; Suzuki, S.; Liu, N.; Kitagawa, M.; Xiong, Y. Long non-coding RNA anril is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011, 30, 1956–1962. [Google Scholar] [CrossRef]
- Achour, C.; Aguilo, F. Long non-coding RNA and Polycomb: An intricate partnership in cancer biology. Front. Biosci. 2018, 23, 2106–2132. [Google Scholar]
- Margueron, R.; Li, G.; Sarma, K.; Blais, A.; Zavadil, J.; Woodcock, C.L.; Dynlacht, B.D.; Reinberg, D. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 2008, 32, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Leung, F.C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004, 20, 1170–1177. [Google Scholar] [CrossRef]
- Yu, W.; Gius, D.; Onyango, P.; Muldoon-Jacobs, K.; Karp, J.; Feinberg, A.P.; Cui, H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008, 451, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Cunnington, M.S.; SantibanezKoref, M.; Mayosi, B.M.; Burn, J.; Keavney, B. Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genet. 2010, 6, e1000899. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, Z.; Mao, C.; Zhou, Y.; Yu, L.; Yin, Y.; Wu, S.; Mou, X.; Zhu, Y. ANRIL inhibits p15 (INK4b) through the TGFb1 signaling pathway in human esophageal squamous cell carcinoma. Cell. Immunol. 2014, 289, 91–96. [Google Scholar] [CrossRef]
- Zhang, E.B.; Kong, R.; Yin, D.D.; You, L.H.; Sun, M.; Han, L.; Xu, T.P.; Xia, R.; Yang, J.S.; De, W.; et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 2014, 5, 2276–2292. [Google Scholar] [CrossRef]
- Meseure, D.; Vacher, S.; Drak Alsibai, K.; Nicolas, A.; Chemlali, W.; Caly, M.; Lidereau, R.; Pasmant, E.; Callens, C.; Bieche, I. Expression of ANRIL-Polycomb Complexes-CDKN2A/B/ARF Genes in Breast Tumors: Identification of a Two-Gene (EZH2/CBX7) Signature with Independent Prognostic Value. Mol. Cancer Res. 2016, 14, 623–633. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, T.; Xu, Z.; Cao, X. Upregulation of the long non-coding RNA BANCR correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Biomed. Pharmacother. 2016, 82, 406–412. [Google Scholar] [CrossRef]
- De los Campos, G.; Gianola, D.; Allison, D.B. Predicting genetic predisposition in humans: The promise of whole-genome markers. Nat. Rev. Genet. 2010, 11, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Pasmant, E.; Sabbagh, A.; Masliah-Planchon, J.; Ortonne, N.; Laurendeau, I.; Melin, L.; Ferkal, S.; Hernandez, L.; Leroy, K.; Valeyrie-Allanore, L.; et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J. Natl. Cancer Inst. 2011, 103, 1713–1722. [Google Scholar] [CrossRef]
- Xie, H.; Rachakonda, P.S.; Heidenreich, B.; Nagore, E.; Sucker, A.; Hemminki, K.; Schadendorf, D.; Kumar, R. Mapping of deletion breakpoints at the CDKN2A locus in melanoma: Detection of MTAP-ANRIL fusion transcripts. Oncotarget 2016, 7, 16490–16504. [Google Scholar] [CrossRef]
- Wan, G.; Mathur, R.; Hu, X.; Liu, Y.; Zhang, X.; Peng, G.; Lu, X. Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal. 2013, 25, 1086–1095. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, J.Q.; Chen, J.Z.; Chen, H.X.; Qiu, F.N.; Yan, M.L.; Chen, Y.L.; Peng, C.H.; Tian, Y.F.; Wang, Y.D. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study. Int. J. Biol. Macromol. 2017, 102, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Meseure, D.; Vacher, S.; Lallemand, F.; Alsibai, K.D.; Hatem, R.; Chemlali, W.; Nicolas, A.; De Koning, L.; Pasmant, E.; Callens, C.; et al. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br. J. Cancer 2016, 114, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Burd, C.E.; Jeck, W.R.; Liu, Y.; Sanoff, H.K.; Wang, Z.; Sharpless, N.E. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010, 6, e1001233. [Google Scholar] [CrossRef]
- Congrains, A.; Kamide, K.; Katsuya, T.; Yasuda, O.; Oguro, R.; Yamamoto, K.; Ohishi, M.; Rakugi, H. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem. Biophys. Res. Commun. 2012, 419, 612–616. [Google Scholar] [CrossRef]
- Motterle, A.; Pu, X.; Wood, H.; Xiao, Q.; Gor, S.; Liang Ng, F.; Chan, K.; Cross, F.; Shohreh, B.; Poston, R.N.; et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum. Mol. Genet. 2012, 21, 4021–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.D.; Hwang, S.J.; Voorman, A.; Morrison, A.; Peloso, G.M.; Hsu, Y.H.; Thanassoulis, G.; Newton-Cheh, C.; Rogers, I.S.; Hoffmann, U.; et al. Resequencing and clinical associations of the 9p21.3 region: A comprehensive investigation in the Framingham heart study. Circulation 2013, 127, 799–810. [Google Scholar] [CrossRef]
- Kong, Y.; Sharma, R.B.; Nwosu, B.U.; Alonso, L.C. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia 2016, 59, 1579–1593. [Google Scholar] [CrossRef]
- Gan, Y.; Ma, W.; Wang, X.; Qiao, J.; Zhang, B.; Cui, C.; Liu, Z.; Deng, D. Coordinated transcription of ANRIL and P16 genes is silenced by P16 DNA methylation. Chin. J. Cancer Res. 2018, 30, 93–103. [Google Scholar] [CrossRef]
- Lillycrop, K.; Murray, R.; Cheong, C.; Teh, A.L.; Clarke-Harris, R.; Barton, S.; Costello, P.; Garratt, E.; Cook, E.; Titcombe, P.; et al. ANRIL promoter DNA methylation: A perinatal marker for later adiposity. EBioMedicine 2017, 19, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Chen, W.; Qi, F.; Xia, R.; Sun, M.; Xu, T.; Yin, L.; Zhang, E.B.; De, W.; Shu, Y.Q. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2. J. Hematol. Oncol. 2015, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhou, X.; Xu, L.; Rong, C.; Shen, C.; Bian, W. Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. OncoTargets Ther. 2016, 9, 3077–3084. [Google Scholar] [Green Version]
- Wu, J.-H.; Tang, J.-M.; Li, J.; Li, X.-W. Upregulation of SOX2-activated lncRNA ANRIL promotes nasopharyngeal carcinoma cell growth. Sci. Rep. 2018, 8, 3333. [Google Scholar] [CrossRef] [PubMed]
- Holdt, L.M.; Beutner, F.; Scholz, M.; Gielen, S.; Gäbel, G.; Bergert, H.; Schuler, G.; Thiery, J.; Teupser, D. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, S.; Gay, L.A.; Jain, V.; Haecker, I.; Renne, R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog. 2017, 13, e1006508. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, D.D.; Du, C.X.; Wang, Y. Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of miR-186. Oncol. Res. 2017, 26, 345–352. [Google Scholar] [CrossRef]
- Ma, J.; Li, T.; Han, X.; Yuan, H. Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2018, 144, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, M.; Niu, Q.; Zhang, F.; Yang, Y.; Jiang, X. Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1. Braz. J. Med. Biol. Res. 2018, 51, e6839. [Google Scholar] [CrossRef]
Normal Tissues | Nbr | P14 | P16 | P15 | |||
---|---|---|---|---|---|---|---|
r | p-value a | r | p-value a | r | p-value a | ||
Anal canal | 17 | +0.297 | 0.25 (NS) | +0.385 | 0.12 (NS) | +0.542 | 0.024 |
Head and neck | 27 | +0.727 | 0.000026 | +0.137 | 0.50 (NS) | +0.159 | 0.43 (NS) |
Prostate | 7 | +0.094 | 0.83 (NS) | −0.668 | 0.10 (NS) | +0.256 | 0.58 (NS) |
Ovary | 27 | +0.423 | 0.026 | +0.447 | 0.019 | +0.010 | 0.96 (NS) |
Thyroid | 9 | +0.852 | 0.0038 | −0.248 | 0.53 (NS) | −0.201 | 0.61 (NS) |
Cervix | 14 | +0.534 | 0.047 | −0.295 | 0.31 (NS) | +0.116 | 0.69 (NS) |
Skin | 9 | +0.438 | 0.24 (NS) | +0.479 | 0.19 (NS) | −0.114 | 0.77 (NS) |
Endometrium | 8 | +0.286 | 0.50 (NS) | +0.218 | 0.61 (NS) | +0.571 | 0.14 (NS) |
Colon | 30 | +0.647 | 0.00014 | +0.209 | 0.27 (NS) | −0.126 | 0.51 (NS) |
Lung | 16 | +0.644 | 0.0069 | +0.433 | 0.091 (NS) | +0.732 | 0.0013 |
Kidney | 18 | +0.058 | 0.81 (NS) | +0.073 | 0.77 (NS) | +0.124 | 0.63 (NS) |
Pancreas | 11 | +0.609 | 0.045 | +0.202 | 0.56 (NS) | +0.212 | 0.54 (NS) |
Liver | 10 | +0.547 | 0.099 (NS) | +0.291 | 0.42 (NS) | +0.688 | 0.027 |
Bladder | 14 | +0.459 | 0.096 (NS) | +0.034 | 0.90 (NS) | +0.341 | 0.23 (NS) |
Stomach | 11 | +0.361 | 0.28 (NS) | −0.391 | 0.23 (NS) | +0.267 | 0.43 (NS) |
Brain | 21 | +0.619 | 0.0028 | +0.419 | 0.056 (NS) | +0.366 | 0.099 (NS) |
Breast | 11 | −0.136 | 0.69 (NS) | −0.195 | 0.57 (NS) | −0.027 | 0.93 (NS) |
Tumoral Tissues | Nbr | P14 | P16 | P15 | |||
---|---|---|---|---|---|---|---|
r | p-value a | r | p-value a | r | p-value a | ||
Anal canal | 48 | +0.571 | 0.000037 | +0.413 | 0.0036 | +0.247 | 0.087 (NS) |
HNSCC | 50 | +0.709 | <0.0000001 | +0.609 | 0.000006 | +0.667 | 0.00000042 |
Prostate | 48 | +0.467 | 0.00093 | +0.427 | 0.0026 | +0.059 | 0.69 (NS) |
Ovary | 52 | +0.728 | <0.0000001 | +0.581 | 0.000013 | +0.502 | 0.0002 |
Thyroid | 31 | +0.854 | <0.0000001 | +0.459 | 0.0092 | +0.690 | 0.000027 |
Cervix | 37 | +0.843 | <0.0000001 | +0.563 | 0.00035 | +0.548 | 0.00053 |
Cutaneous melanoma | 27 | +0.797 | 0.0000013 | +0.392 | 0.041 | +0.854 | <0.0000001 |
Endometrium | 29 | +0.801 | 0.00000042 | +0.742 | 0.000007 | +0.634 | 0.00027 |
Total colon carcinoma | 49 | +0.832 | <0.0000001 | +0.095 | 0.52 (NS) | +0.664 | 0.00000062 |
Lung adenocarcinoma | 38 | +0.553 | 0.0003 | +0.325 | 0.047 | +0.493 | 0.0016 |
Lung squamous cell carcinoma | 16 | +0.380 | 0.15 (NS) | +0.398 | 0.13 (NS) | +0.332 | 0.21 (NS) |
Kidney | 22 | +0.947 | <0.0000001 | +0.700 | 0.00033 | +0.363 | 0.093 (NS) |
Pancreas | 22 | +0.684 | 0.0005 | +0.571 | 0.0054 | +0.801 | 0.000011 |
Liver | 31 | +0.642 | 0.00013 | -0.292 | 0.11 (NS) | +0.340 | 0.058 (NS) |
Total bladder | 49 | +0.865 | <0.0000001 | +0.727 | <0.0000001 | +0.762 | <0.0000001 |
Stomach | 29 | +0.733 | 0.00001 | +0.219 | 0.25 (NS) | +0.426 | 0.02 |
Total glioma | 50 | +0.902 | <0.0000001 | +0.858 | <0.0000001 | +0.812 | <0.0000001 |
Total breast | 96 | +0.758 | <0.0000001 | +0.576 | <0.0000001 | +0.576 | <0.0000001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drak Alsibai, K.; Vacher, S.; Meseure, D.; Nicolas, A.; Lae, M.; Schnitzler, A.; Chemlali, W.; Cros, J.; Longchampt, E.; Cacheux, W.; et al. High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter. Non-Coding RNA 2019, 5, 44. https://doi.org/10.3390/ncrna5030044
Drak Alsibai K, Vacher S, Meseure D, Nicolas A, Lae M, Schnitzler A, Chemlali W, Cros J, Longchampt E, Cacheux W, et al. High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter. Non-Coding RNA. 2019; 5(3):44. https://doi.org/10.3390/ncrna5030044
Chicago/Turabian StyleDrak Alsibai, Kinan, Sophie Vacher, Didier Meseure, Andre Nicolas, Marick Lae, Anne Schnitzler, Walid Chemlali, Jerome Cros, Elisabeth Longchampt, Wulfran Cacheux, and et al. 2019. "High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter" Non-Coding RNA 5, no. 3: 44. https://doi.org/10.3390/ncrna5030044
APA StyleDrak Alsibai, K., Vacher, S., Meseure, D., Nicolas, A., Lae, M., Schnitzler, A., Chemlali, W., Cros, J., Longchampt, E., Cacheux, W., Pignot, G., Callens, C., Pasmant, E., Allory, Y., & Bieche, I. (2019). High Positive Correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL–ARF Bidirectional Promoter. Non-Coding RNA, 5(3), 44. https://doi.org/10.3390/ncrna5030044